

Orientamento agli Studi Universitari in Ingegneria

Corsi di Laurea Triennali e Magistrali

A.A. 2026-27

L'Università di Padova vanta una delle più antiche e prestigiose tradizioni ingegneristiche d'Italia. Già nel 1806 nasceva qui il primo Corso di Studi in Ingegneria Civile, seguito nel 1876 dalla Scuola di Applicazione per Ingegneri. Un percorso storico che, attraverso la trasformazione in Facoltà nel 1935, ha portato nel 2013 al ritorno all'antica e significativa denominazione di Scuola di Ingegneria.

Oggi la Scuola riunisce sei Dipartimenti che integrano competenze ingegneristiche, matematiche e fisiche, creando un ambiente dinamico e interdisciplinare:

- Ingegneria Civile, Edile e Ambientale
- Ingegneria dell'Informazione
- Ingegneria Industriale
- Tecnica e Gestione dei Sistemi Industriali
- Matematica
- Fisica e Astronomia "Galileo Galilei"

Con 16 corsi di laurea triennale, 22 lauree magistrali e una magistrale a ciclo unico, la Scuola rappresenta un punto di riferimento per la formazione di ingegneri innovativi, pronti a rispondere alle sfide scientifiche e tecnologiche della società contemporanea. Oltre 400 docenti e più di 17.000 studenti animano ogni giorno un polo di eccellenza in continua evoluzione.

I corsi di laurea triennale offrono una preparazione scientifica solida e versatile, mentre le lauree magistrali permettono di acquisire competenze avanzate e altamente specializzate, aprendo la strada a professioni di grande responsabilità e impatto. La Scuola di Ingegneria, nell'ottica della formazione permanente e del Lifelong Learning, propone corsi online altamente specializzanti e professionalizzanti, pensati per favorire up-skilling e re-skilling e supportare così la crescita continua di studenti e professionisti.

Ai corsi di studio tradizionali erogati in italiano si affiancano numerosi corsi di studio erogati in lingua inglese, per la maggior parte di livello magistrale, a conferma del fatto che la Scuola guarda costantemente oltre i confini nazionali: promuove la mobilità internazionale e vanta collaborazioni con alcune tra le più prestigiose università del mondo.

A conferma della sua vocazione globale, la Scuola partecipa a innumerevoli scambi accademici internazionali tramite il programma Erasmus e rientra tra le sedi che fanno parte della European University Alliance ARQUS.

È inoltre membro del T.I.M.E. (Top International Managers in Engineering), un network di eccellenza che offre percorsi di doppio titolo e di cui fanno parte università tecniche e scuole di ingegneria di primo piano a livello internazionale.

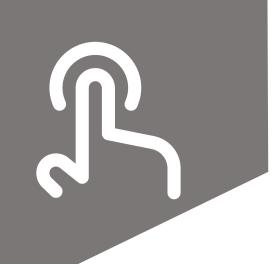
Attualmente sono in vigore accordi con Yokohama National University, Technical University of Denmark, Groupe Ecoles Centrale, UPC – BarcelonaTECH, Instituto Superior Técnico, Université Catholique de Louvain.

Sommario

La Scuola di Ingegneria dell'Università di Padova
Il Dipartimento di Ingegneria Civile, Edile e Ambientale 4
Ingegneria civile
Ingegneria per l'ambiente e il territorio
Tecnologie digitali per l'edilizia e il territorio
Ingegneria edile-architettura
Corsi di Laurea Magistrale
Il Dipartimento di Ingegneria dell'Informazione
Ingegneria biomedica
Ingegneria elettronica
Ingegneria informatica
Ingegneria delle telecomunicazioni, internet e multimedia
Ingegneria dell'automazione e dei sistemi
Information engineering
Corsi di Laurea Magistrale
Il Dipartimento di Ingegneria Industriale
Ingegneria aerospaziale
Ingegneria chimica e dei materiali
Ingegneria dell'energia
Ingegneria meccanica
Corsi di Laurea Magistrale
Il Dipartimento di Tecnica e Gestione dei sistemi industriali27
Ingegneria gestionale
Ingegneria meccatronica
Ingegneria dell'innovazione del prodotto
Corsi di Laurea Magistrale
Le sedi di Ingegneria

Il Dipartimento di Ingegneria Civile, Edile e Ambientale è un centro di eccellenza per la ricerca, la formazione e l'innovazione in numerosi ambiti dell'ingegneria, tra cui l'Ingegneria Civile e Ambientale, l'Edile Architettura e le Tecnologie Digitali per l'Edilizia e il Territorio. La sua missione è sviluppare soluzioni ingegneristiche avanzate, promuovendo l'innovazione e la competitività attraverso un'elevata qualità nella ricerca e nella didattica.

Con una tradizione formativa secolare, il Dipartimento si fonda sugli insegnamenti di scienziati di calibro europeo come Giovanni Poleni e Simone Stratico. Oggi ospita numerosi laboratori di ricerca, in cui docenti, ricercatori, studenti di dottorato e personale tecnico collaborano in un ambiente dinamico e altamente stimolante.


Il Dipartimento mantiene solide collaborazioni con enti pubblici, aziende e centri di ricerca nazionali e internazionali, rafforzando il suo ruolo di riferimento nel settore. Le sue attività spaziano dalla gestione del territorio alla ricerca computazionale e all'innovazione tecnologica, abbracciando tematiche quali la progettazione strutturale, la gestione delle risorse idriche, la conservazione del patrimonio architettonico e la pianificazione dei trasporti.

L'offerta formativa è progettata per garantire un alto livello di competenza, grazie a un forte legame con il territorio e alla costante integrazione con l'attività di ricerca internazionale. Gli studenti sviluppano conoscenze tecnico-scientifiche avanzate in settori chiave come la modellazione nu-

merica, la progettazione sostenibile, la gestione delle acque, la pianificazione urbana, le tecniche di costruzione innovative, la conservazione del patrimonio culturale e le tecnologie digitali applicate all'edilizia.

Il Dipartimento è una delle istituzioni di riferimento in Italia per la ricerca nelle discipline dell'ingegneria civile, edile e ambientale, con un forte orientamento interdisciplinare. Partecipa attivamente a progetti di ricerca a livello europeo e globale, favorendo la mobilità di docenti, ricercatori e studenti e promuovendo collaborazioni scientifiche di alto livello.

Al Dipartimento afferiscono tre corsi di Laurea triennale, cinque corsi di Laurea Magistrale (di cui tre erogati interamente in lingua inglese e uno internazionale), un corso di Laurea Magistrale a ciclo unico, un corso di Dottorato di ricerca e numerosi Master di primo e secondo livello, offrendo opportunità formative diversificate e altamente qualificate per studenti e professionisti del settore.

Corsi di Laurea

Dipartimento di Ingegneria Civile, Edile e Ambientale

Lauree triennali

Ingegneria civile

Ingegneria per l'ambiente e il territorio

Tecnologie digitali per l'edilizia e il territorio

Lauree magistrali

Ingegneria civile

Environmental engineering

Mathematical engineering

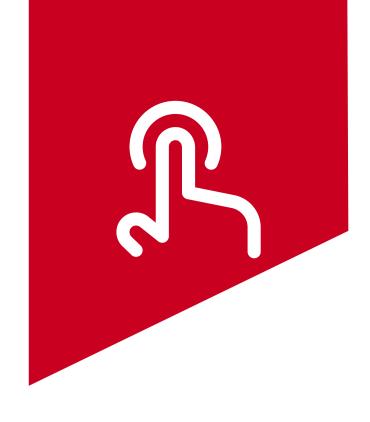
Water and geological risk engineering

Intelligent civil infrastructures engineering (in fase di approvazione)

Laurea magistrale a ciclo unico

Ingegneria edile-architettura (durata quinquennale)

Laurea magistrale internazionale STeDe


Erasmus Mundus joint master on climate change and diversity: sustainable territorial development

Servizio informazioni per la didattica ICEA

M

didattica@dicea.unipd.it

DICEA / Dipartimento di Ingegneria Civile, Edile e Ambientale

Ingegneria civile

Caratteristiche e finalità

Il corso di laurea fornisce una preparazione di base in fisica e matematica e una formazione tecnica adeguate per interpretare e risolvere i problemi propri dell'ingegneria civile.

Forma ingegneri in grado di pianificare, progettare, assistere alla costruzione e provvedere alla manutenzione e gestione delle opere civili e dei relativi servizi (strade, ponti, ferrovie, aeroporti, opere di difesa e regolazione idraulica).

Nello specifico il corso prepara i futuri ingegneri ad utilizzare autonomamente sia metodologie standardizzate sia metodologie avanzate per l'analisi e la progettazione delle opere civili e a collaborare con tecnici esperti di altre discipline nella prospettiva multidisciplinare che la complessità dei problemi trattati richiede.

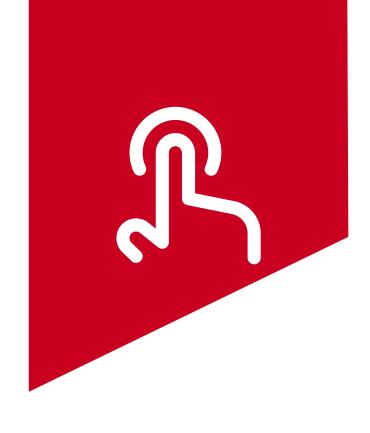
Materie di studio

Analisi matematica, calcolo e metodi numerici, metodi statistici, meccanica razionale, fisica e fisica tecnica, disegno, chimica applicata, scienza e tecnica delle costruzioni, geotecnica, idraulica e costruzioni idrauliche, analisi dei sistemi di trasporto, progettazione di strade, ferrovie ed aeroporti, architettura tecnica, lingua straniera.

Ambiti occupazionali

Il laureato potrà operare in diversi ambiti professionali, come la progettazione assistita, la produzione, la gestione e l'organizzazione delle strutture tecnico-commerciali, occupandosi di impianti e di infrastrutture civili da un punto di vista ge-


Classe di laurea L-7 R - Ingegneria civile e ambientale


> Modalità di accesso Accesso libero con provα

> > Lingua di erogazione *Italiano*

Sede del corso Padova

stionale e progettuale, sia nella libera professione, sia nelle imprese che nelle amministrazioni pubbliche.

DICEA / Dipartimento di Ingegneria Civile, ICEA/ Edile e Ambientale

Ingegneria per l'ambiente e il territorio

Caratteristiche e finalità

Il corso prepara professionisti in grado di descrivere i problemi dell'ingegneria per la tutela del territorio, di impostare e condurre esperimenti analizzando e interpretando i dati ottenuti, e di comprendere l'impatto delle soluzioni ingegneristiche nel contesto sociale e fisico-ambientale.

Inoltre essi cooperano nella progettazione di componenti, sistemi e processi di disinquinamento, nonché nella progettazione degli interventi di difesa del suolo e del territorio, e di tutela dell'ambiente.

Materie di studio

Matematica, fisica, chimica, disegno, calcolo numerico e programmazione, analisi dei dati, fisica tecnica, idraulica, topografia e cartografia, scienza delle costruzioni, elementi di elettrotecnica, idrologia, macchine, costruzioni idrauliche, ingegneria sanitaria ambientale, sistemi di gestione della qualità ambientale, geotecnica, diritto dell'ambiente, sicurezza e analisi del rischio, fitodepurazione.

Ambiti occupazionali

I laureati potranno occuparsi di sistemi di controllo e monitoraggio dell'ambiente e del territorio, raccolta e trattamento dei rifiuti e della bonifica ambientale, esercizio di reti idriche e di altri fluidi, valutazione degli impatti e della compatibilità ambientale di piani e opere.

Classe di laurea L-7 R - Ingegneria civile e ambientale

> Modalità di accesso Accesso libero con prova

> > Lingua di erogazione Italiano

> > > Sede del corso Padova

DICEA / Dipartimento di Ingegneria Civile, ICEA/ Edile e Ambientale

Tecnologie digitali per l'edilizia e il territorio

Caratteristiche e finalità

Il corso di laurea professionalizzante e abilitante della classe LP-01 forma una figura altamente qualificata, con solide competenze tecnico-scientifiche e una preparazione multidisciplinare, favorendo un rapido e proficuo inserimento nel mondo del lavoro.

Il percorso formativo assicura un'approfondita conoscenza nei settori delle costruzioni, dell'estimo, della topografia, del diritto e dell'economia, fornendo gli strumenti necessari per operare efficacemente in contesti professionali diversificati.

L'approccio integrato permette ai laureati di interagire e collaborare in molteplici ambiti, sia come liberi professionisti che in ruoli all'interno di enti pubblici e imprese private.

Materie di studio

Gli studenti acquisiranno una preparazione tecnico-scientifica solida e diversificata, approfondendo discipline fondamentali come matematica, fisica, informatica, termodinamica e meccanica dei solidi.

Il percorso si caratterizza inoltre per un forte orientamento all'innovazione digitale applicata all'edilizia e al territorio, includendo lo studio di tecnologie moderne come CAD e BIM, droni, GIS e laser scanner. Gli insegnamenti hanno un'impronta fortemente pratica, con oltre il 40% dei corsi dedicati ad attività di laboratorio.

Il terzo anno del corso è interamente riservato al tirocinio, garantendo un'importante esperienza sul campo e un contatto diretto con il mondo del lavoro.

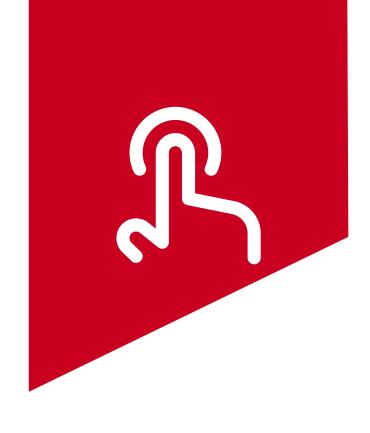
Classe di laurea L-P01 - Professioni tecniche per l'edilizia e il territorio

> Modalità di accesso Numero programmato

Lingua di erogazione Italiano e Inglese

> Sede del corso Padova

Ambiti occupazionali


I laureati potranno operare in diversi settori, sia come liberi professionisti che come dipendenti di enti pubblici, aziende e studi tecnici.

Le competenze acquisite permetteranno di svolgere attività di progettazione, direzione lavori e collaudo di opere civili ed edili, oltre a occuparsi del rilevamento e restituzione documentale di immobili. Saranno in grado di gestire pratiche catastali per fabbricati e terreni, elaborare stime e perizie, e collaborare con organizzazioni specializzate in sicurezza nei cantieri, certificazioni e valutazioni delle prestazioni, comprese quelle energetiche.

Grazie all'ampia preparazione tecnica e digitale, il laureato avrà un ruolo chiave nell'evoluzione del settore edilizio e territoriale.

8

DICEA / Dipartimento di Ingegneria Civile, Edile e Ambientale

Ingegneria edile-architettura

Corso di laurea magistrale a ciclo unico, durata 5 anni

Caratteristiche e finalità

La realizzazione di opere di architettura e edilizie è oggi caratterizzata da una grande complessità. Le sfide della sostenibilità, la riduzione dei consumi energetici, il restauro e il recupero del patrimonio edilizio richiedono una formazione completa e duttile.

Il percorso formativo in Ingegneria Edile - Architettura punta a sviluppare competenze avanzate sia nell'uso delle più innovative tecnologie progettuali e costruttive, sia nell'intervento sul patrimonio costruito esistente. L'Ingegnere Edile - Architetto cura i caratteri compositivi, tipologici, strutturali e tecnologici delle opere di architettura: si occupa della loro progettazione; del recupero strutturale e funzionale; del restauro monumentale.

È in grado di gestire la progettazione urbana e territoriale in rapporto al contesto naturale, sociale e produttivo. L'impostazione è multidisciplinare e integra insegnamenti di tipo tecnico-scientifico con altri di carattere umanistico-compositivo, così da fornire tutti gli strumenti conoscitivi necessari per la progettazione.

La didattica utilizza laboratori di progettazione e di sperimentazione, lavoro di gruppo e interazione con i docenti. Sono previste inoltre attività di tirocinio formativo.

Materie di studio

Matematica, fisica, disegno e rappresentazione avanzata dell'architettura, informatica, scienza e tecnica delle costruzioni, costruzioni idrauliche, geotecnica, storia dell'architettura, architettura tecnica, composizione architettonica e urbana, restauro

Classe di laurea

LM-4 c.u. R - Architettura e ingegneria edile-architettura (quinquennale)

Modalità di accesso Numero programmato nazionale

> Lingua di erogazione Italiano

> > Sede del corso Padova

dell'architettura, estimo, produzione edilizia, tecnologia dei materiali, fisica tecnica ambientale, urbanistica e tecnica e pianificazione urbanistica, lingua straniera.

Ambiti occupazionali

Il laureato ha come ambito professionale la progettazione avanzata e innovativa nel campo delle opere di architettura e dell'edilizia, della pianificazione, della gestione dei sistemi complessi territoriali, della realizzazione di reti infrastrutturali, del processo progettuale e attuativo nel recupero e nel restauro del patrimonio edilizio storico.

Lavora negli studi professionali di progettazione nel settore edile, nelle industrie di materiali e componenti edili, nelle aziende di gestione e servizi immobiliari, nei servizi di controllo di qualità, sicurezza, coordinamento e programmazione, negli uffici tecnici di amministrazioni pubbliche e di aziende industriali.

Corsi di Laurea Magistrale

DICEA / Dipartimento di Ingegneria Civile, Edile e Ambientale

INGEGNERIA CIVILE

La Laurea Magistrale in Ingegneria Civile offre una formazione avanzata che combina teorie classiche e approcci innovativi. Il corso si articola in cinque curricula principali: Strutture, Idraulica, Geotecnica, Sistemi e Infrastrutture di Trasporto, Progettazione Tecnologica e Recupero Edilizio. Al termine del percorso, l'ingegnere civile sarà in grado di affrontare le sfide complesse nella pianificazione, progettazione, manutenzione e gestione delle infrastrutture, con un focus particolare sulla sostenibilità, l'efficienza e il rispetto per l'ambiente.

ENVIRONMENTAL ENGINEERING

Il corso rappresenta il naturale completamento di quello triennale, con lo scopo di preparare un laureato che, grazie ad un approccio multidisciplinare che considera i diversi aspetti legislativi, chimici e fisici, geologici e geotecnici, idraulici e idrologici, sia in grado di progettare e gestire soluzioni ingegneristiche a minimo impatto nei confronti del contesto sociale e fisico- ambientale.

MATHEMATICAL ENGINEERING

Il corso forma un ingegnere che possieda conoscenze approfondite della matematica applicata e delle altre scienze di base e un'avanzata conoscenza degli aspetti fondamentali dell'ingegneria e/o della finanza in generale; competenze avanzate per affrontare i problemi connessi con lo sviluppo e l'utilizzo di modelli matematici; capacità di collaborare in ambienti multidisciplinari; capacità di affrontare problemi modellistici complessi nell'ambito dell'ingegneria, in generale, e/o della finanza e/o della fisica.

WATER AND GEOLOGICAL RISK ENGINEERING

La laurea magistrale in Ingegneria del rischio idrologico-idraulico e geologico mira a formare i nuovi leader globali nella scienza e tecnologia dei rischi connessi all'acqua, alla stabilità dei terreni e al cambiamento climatico. Fornisce un background interdisciplinare fondato su una solida preparazione teorica sul Sistema Terra, il ciclo dell'acqua globale, i cambiamenti climatici,

che include competenze d'avanguardia nel campo del monitoraggio da sensori aerei, satellitari e su droni, della modellazione idrologica, idraulica, geotecnica e geomorfologica, dell'analisi dei rischi.

SUSTAINABLE TERRITORIAL DEVELOPMENT - CLIMATE CHANGE, DIVERSITY COOPERATION

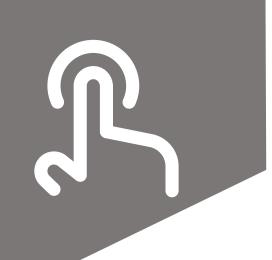
La laurea magistrale internazionale prevede un percorso di studi che si articola in 4 semestri da svolgere presso 4 diverse università europee ed extraeuropee.

SteDe - CCD prepara specialisti della transizione territoriale sostenibile per la costruzione di politiche ed interventi di adattamento ai cambiamenti climatici. È rivolta a persone interessate ad operare alle diverse scale territoriali: dal locale al globale, e a quanti sono interessati ad operare nelle organizzazioni internazionali per affrontare le sfide ambientali e sociali planetarie.

INTELLIGENT CIVIL INFRASTRUCTURES ENGINEERING (in fase di approvazione)

Il Corso di Laurea Magistrale in Intelligent Civil Infrastructures Engineering rappresenta un'iniziativa innovativa e unica nel panorama formativo nazionale e internazionale. Erogato in modalità prevalentemente a distanza, si propone di formare una nuova figura professionale interdisciplinare in grado di gestire l'intero ciclo di vita delle infrastrutture civili in chiave digitale e sostenibile. Oltre alle discipline fondamentali dell'Ingegneria Civile, il corso approfondisce temi quali il monitoraggio strutturale, l'analisi di big data, l'intelligenza artificiale, i digital twin e le strategie di ottimizzazione, applicati alla gestione predittiva e alla manutenzione delle infrastrutture civili "intelligenti".

Il nome di Ingegneria dell'Informazione individua nel suo complesso una galassia di discipline ingegneristiche alle quali si devono lo straordinario sviluppo delle tecniche di acquisizione, trasmissione ed elaborazione dell'informazione, la realizzazione e l'evoluzione delle tecnologie elettroniche, dei dispositivi micro e nanometrici, dei circuiti ad alta integrazione che le hanno rese possibili, nonché l'applicazione di tali tecniche ai campi più disparati.


Il mondo e la società in cui viviamo dipendono in modo sempre maggiore dalle nuove tecnologie che nascono, si sviluppano e maturano grazie all'Ingegneria dell'Informazione. Basti pensare per esempio agli enormi progressi fatti nel campo dell'automotive grazie all'integrazione di sensori, circuiti elettronici di ultima generazione con le tecniche avanzate di controllo e applicazioni software che rendono l'uso della macchina sempre più sicuro e versatile.

Si può anche ricordare l'impressionante sviluppo della comunicazione (attraverso cavi, collegamenti radio, collegamenti satellitari, fibre ottiche, telefonia cellulare) con l'introduzione di dispositivi e circuiti elettronici che permettono il trasferimento di dati ad elevatissima velocità.

Si pensi inoltre allo sviluppo dei calcolatori elettronici e, più recentemente, degli smartphones, dove il connubio tra dispositivi elettronici veloci e a basso consumo, l'informatica, e le telecomunicazioni, ha permesso di realizzare un dispositivo multifunzionale che ha rivoluzionato la vita di tutti i giorni.

Pacemaker, defibrillatori impiantabili, capsule endoscopiche, tecniche di acquisizione di immagini ad elevata risoluzione sono solo alcuni esempi dell'impatto che l'Ingegneria dell'Informazione ha avuto ed ha in campo biomedico. Queste e molte altre applicazioni dell'Ingegneria dell'Informazione sono divenute di vitale importanza per la scienza, la ricerca, la salute, la qualità della vita e molti servizi di cui tutti beneficiamo quotidianamente.

Alla base di questi sistemi ad alta tecnologia c'è l'Ingegneria dell'Informazione, che ha appunto per oggetto la progettazione, lo sviluppo, la gestione e l'innovazione di queste tecnologie. Data la vastità degli argomenti trattati, all'interno dell'Ingegneria dell'Informazione si sono venute differenziando diverse discipline, per le quali l'Università di Padova ha sempre fornito corsi di studio innovativi.

Corsi di Laurea

Dipartimento di Ingegneria dell'Informazione

Lauree triennali

Ingegneria biomedica

Ingegneria elettronica

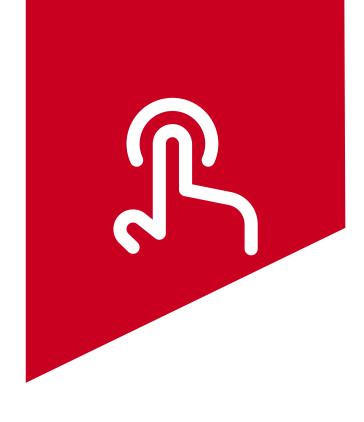
Ingegneria informatica

Ingegneria delle telecomunicazioni, internet e multimedia

Ingegneria dell'automazione e dei sistemi

EN Information engineering

Lauree magistrali


Bioingegneria

- **EN** Computer engineering
- Control systems engineering
- **EN** Cybersecurity
- Electronic engineering
- Ict for internet and multimedia

Servizio informazioni per la didattica DEI

orientamento@dei.unipd.it

Ingegneria biomedica

Caratteristiche e finalità

Il corso di laurea in Ingegneria Biomedica fornisce allo studente una preparazione nelle metodologie e tecnologie proprie dell'ingegneria applicate al settore delle scienze della vita e prepara sia ad un pronto inserimento nel mondo del lavoro che al proseguimento degli studi, offrendo l'accesso diretto alla Laurea Magistrale in Bioingegneria.

I corsi del primo anno dotano lo studente delle conoscenze di base di matematica, fisica, chimica, anatomia e fisiologia, a cui si aggiungono, nei due anni successivi, fondamenti di informatica, fondamenti di elettronica, ingegneria dei sistemi biologici, biomateriali ed altre discipline dell'aerea dell'ingegneria dell'informazione (classe L-8) e dell'area dell'ingegneria industriale (classe L-9).

Tale impostazione multidisciplinare consente all'ingegnere biomedico di operare a diversi livelli nelle attività industriali e di servizio per affrontare le problematiche relative all'impatto delle tecnologie sull'uomo e sul mondo biologico.

Materie di studio

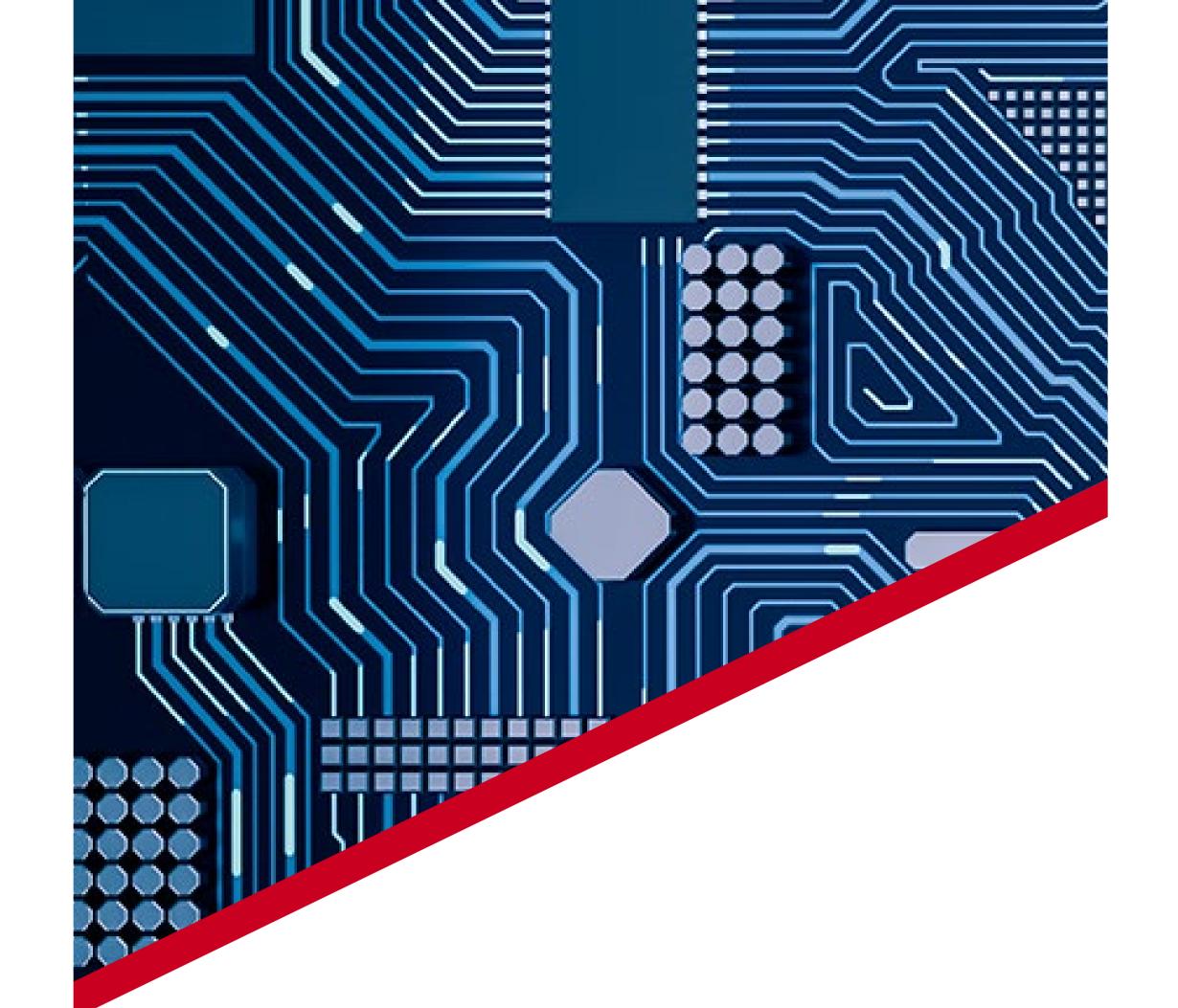
Matematica, fisica, chimica, biologia, anatomia e fisiologia, fondamenti di informatica, teoria dei circuiti, segnali e sistemi, biomateriali, ingegneria dei sistemi biologici, elettronica, automatica, biomeccanica, tecnologia e strumentazione biomedica, elaborazione di segnali biologici, informatica medica, meccanica per bioingegneria, human movement bioengineering, dinamica dei fluidi per l'ingegneria biomedica, labo-

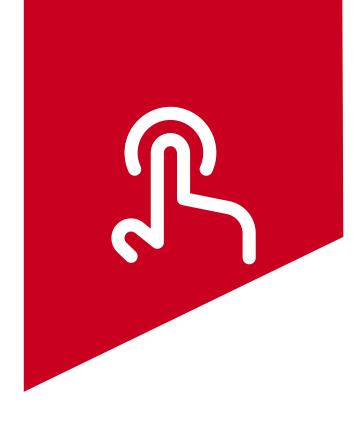
Classe di laurea

L-8 R - Ingegneria dell'informazione & L-9 R - Ingegneria industriale

Modalità di accesso Numero programmato

Lingua di erogazione Italiano


> Sede del corso Padova


ratorio di ingegneria cellulare, meccanica dei materiali.

Sono previste esperienze di laboratorio e tirocinio. Sono inoltre offerti cinque corsi a scelta: misure ed acquisizione di dati biomedici, bioelettromagnetismo, project management, communication networks e fondamenti di comunicazioni.

Ambiti occupazionali

Industria biomedica (produzione e commercializzazione di apparecchiature e dispositivi per la prevenzione/diagnosi/cura/riabilitazione/monitoraggio di biomateriali e biosensori, di sistemi robotizzati per applicazioni biomediche, di organi artificiali e di sistemi di supporto funzionale per disabili); sistema sanitario e società di servizi di ingegneria clinica/biomedica (progettazione di sistemi sanitari, gestione delle tecnologie biomediche e delle applicazioni telematiche alla salute); industria farmaceutica, alimentare, biotecnologica e ambientale.

Ingegneria elettronica

Caratteristiche e finalità

Il corso prepara ingegneri che operano nella progettazione, produzione e collaudo di circuiti, apparati e sistemi elettronici, destinati ad applicazioni domestiche, industriali, ai sistemi di trasporto, all'elettronica degli autoveicoli, ai sistemi biomedicali.

Il percorso formativo ha carattere fortemente multidisciplinare, e comprende corsi di fisica, matematica e informatica e corsi più specialistici relativi alla progettazione elettronica analogica e digitale, alla microinformatica, ai microprocessori e microcontrollori, all'elettronica di potenza, nonché alle tecniche dell'automazione, del controllo di processi e sistemi, alle reti di calcolatori e ai sistemi di telecomunicazione.

I corsi del primo anno (comuni a tutti gli altri corsi di laurea triennale nell'area dell'Ingegneria dell'Informazione) dotano lo studente delle conoscenze di base di matematica, fisica ed informatica.

Materie di studio

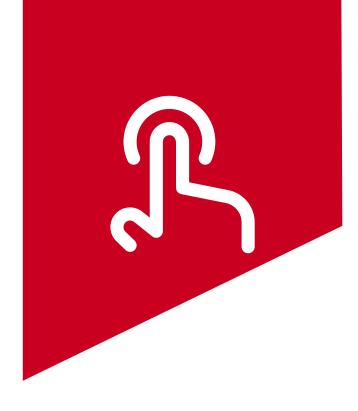
Matematica, fisica, teoria dei circuiti, automazione (analisi dei sistemi, controllo digitale), elettronica (misure elettroniche, elettronica analogica e digitale, elettronica industriale, microprocessori e DSP), informatica (dati, algoritmi e programmazione), telecomunicazioni (segnali e sistemi), comunicazioni su fibra ottica e dispositivi, reti di telecomunicazioni, lingua inglese. Sono previste esperienze di laboratorio.

Ambiti occupazionali

I laureati in Ingegneria Elettronica trovano occupazione in un ampio numero di diverse aziende manifatturiere del comparClasse di laurea L-8 R - Ingegneria dell'informazione

> Modalità di accesso Accesso libero con provα

> > Lingua di erogazione Italiano


> > > Sede del corso Padova

to elettronico, elettrico, elettromeccanico, delle telecomunicazioni e della telematica, dell'automazione.

Una lista non esaustiva comprende: aziende coinvolte nella generazione, gestione e controllo dell'energia elettrica; aziende del settore dell'elettronica industriale e di potenza; società coinvolte nella progettazione e produzione di sistemi e dispositivi elettronici per applicazioni biomedicali; aziende impegnate nel settore fotovoltaico e nella progettazione e realizzazione di sistemi di illuminazione a LED; società di ingegneria, società che gestiscono sistemi di telecomunicazioni o di trasmissione dei dati.

L'ingegnere elettronico partecipa alle attività di progettazione, di produzione e gestione, nonché di prova e certificazione dei sistemi elettronici, di telecomunicazione, di automazione; negli stessi settori può svolgere proficuamente un ruolo tecnico-commerciale.

Ingegneria informatica

Caratteristiche e finalità

Il corso di laurea in Ingegneria Informatica è finalizzato alla formazione di un professionista in grado di operare nei settori della progettazione, produzione, esercizio e manutenzione dei sistemi di elaborazione dell'informazione, nei più diversi contesti produttivi e dei servizi.

Il corso si caratterizza per la proposta di una precisa riflessione sui fondamenti dell'ingegneria dell'informazione (principalmente nel secondo anno) con particolare riferimento alle metodologie peculiari dell'Ingegneria Informatica, che vengono approfondite sia nel secondo che nel terzo anno, evidenziandone anche gli aspetti applicativi.

Coerentemente con gli altri corsi della classe di laurea, il primo anno verte principalmente sulle conoscenze di base di matematica, fisica e informatica.

Materie di studio

Algebra lineare e geometria, analisi matematica, architettura degli elaboratori, fisica generale, informatica, dati e algoritmi, controlli automatici, fondamenti di probabilità, teoria dei circuiti, elettronica, telecomunicazioni, reti di calcolatori, sistemi operativi, basi di dati, laboratorio di programmazione, ingegneria del software, programmazione di sistemi embedded, modelli e software per l'ottimizzazione discrete, gestione di progetti, segnali e sistemi, economia ed organizzazione aziendale, lingua inglese.

Ambiti occupazionali

La diffusione pervasiva di strumenti di elaborazione dell'informazione in ogni set-

Classe di laurea L-8 R - Ingegneria dell'informazione

> Modalità di accesso Numero programmato

Lingua di erogazione Italiano

> Sede del corso Padova

tore di attività configura come virtualmente illimitato il numero degli ambiti occupazioni propri dell'ingegnere informatico.

Senza voler essere esaustivi citiamo: progetto e realizzazione di sistemi informativi aziendali; automazione dei servizi in enti pubblici e privati; sviluppo di sistemi integrati per la supervisione di impianti; sviluppo di sistemi e applicazioni distribuite in rete, in particolare quelle multimediali; realizzazione di sistemi di elaborazione embedded.

Ingegneria delle telecomunicazioni, internet e multimedia

Caratteristiche e finalità

Il corso è orientato alla formazione di laureate/i negli ambiti dei sistemi, delle tecnologie e dei protocolli della rete Internet, della sicurezza nella comunicazione di dati e segnali, della creazione, elaborazione e trasmissione di segnali multimediali.

Il corso di studi è interdisciplinare e prevede lo studio di materie di base come matematica, fisica e informatica, corsi specifici sulle tecnologie di Internet e gli strumenti per la sua sicurezza, e corsi avanzati su ottimizzazione e la pianificazione di risorse e machine learning per le tecnologie dell'informazione.

Le conoscenze multidisciplinari mirano a rendere il profilo di laureate/i adatto alle moderne esigenze e sfide del mondo del lavoro, aumentando la loro flessibilità e la loro capacità di adeguarsi alle tecnologie in continua evoluzione.

Il percorso di studio prevede attività di laboratorio con approccio problem solving e lavoro di gruppo per verificare sperimentalmente quanto appreso in altri insegnamenti. Il corso di studi prepara inoltre ad una successiva laurea magistrale nei settori dell'ICT.

Materie di studio

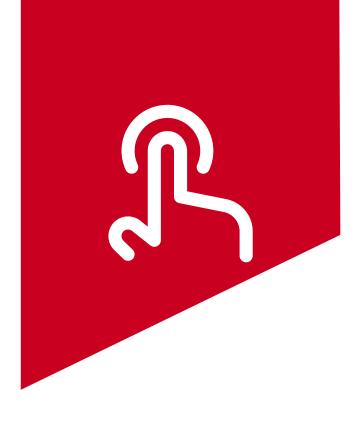
Analisi matematica, fondamenti di informatica, fisica generale, algebra lineare e geometria, architettura degli elaboratori, analisi matematica, elementi di fisica, teoria dei circuiti, calcolo delle probabilità, teoria dei segnali, machine learning, Internet, elettronica, telecomunicazioni, mezzi di trasmissione, controlli automatici, elaborazione di segnali multimediali, laboratorio

Classe di laurea L-8 R - Ingegneria dell'informazione

> Modalità di accesso Accesso libero con provα

> > Lingua di erogazione Italiano e inglese

> > > Sede del corso Padova


di simulazione numerica, metodi numerici per l'ICT, ottimizzazione per Internet e multimedia, dati e algoritmi, laboratorio di Internet e multimedia, laboratorio di ottica e fotonica, sicurezza di Internet, laboratorio di segnali e misure, lingua inglese.

Ambiti occupazionali

Gli ingegneri delle Telecomunicazioni, Internet e Multimedia trovano occupazione sia nelle imprese private sia nella pubblica amministrazione.

Esempi di attività lavorative sono ad esempio: ingegnere junior in aziende con attività nell'ICT; amministratrice/tore di rete e di piattaforme per lo sviluppo di servizi di comunicazione e multimediali; programmatore/trice di protocolli di comunicazione e raccolta dati in Internet o in reti di telecomunicazioni per applicazioni specifiche come reti di sensori, Internet of Things (IoT), reti industriali, etc.; esperto/a nella digitalizzazione, trasmissione ed elaborazione di segnali multimediali; esperta/o nell'integrazione e personalizzazione di sistemi di tecnologie dell'informazione.

Ingegneria dell'automazione e dei sistemi

Caratteristiche e finalità

Il corso di laurea in Ingegneria dell'Automazione e dei Sistemi mira alla formazione di professioniste/i in grado di operare nei settori della progettazione, implementazione e gestione dei sistemi di controllo e più in generale nell'ambito dell'Ingegneria dell'Informazione, nei più diversi contesti produttivi e dei servizi.

Questo corso di laurea è centrato sui temi dell'automazione e dei sistemi di controllo, e fornisce strumenti adatti ad affrontare un ampio spettro di applicazioni nell'ambito dell'automazione, della robotica, dell'industria 5.0, dell'intelligenza artificiale e dei sistemi complessi.

Nel corso si acquisiscono conoscenze metodologiche estese e approfondite sia nelle materie di base sia in quelle tipiche dell'area ICT, legate alla programmazione, all'elaborazione e alla trasmissione dei segnali, all'elettronica e alla modellistica e al controllo di sistemi.

Si svilupperanno inoltre capacità progettuali negli ambiti tecnologici più innovativi, che includono tecniche moderne di automazione, machine learning, robotica e visione computazionale.

Il corso include una ricca offerta di corsi di laboratorio o applicativi per mettere in pratica le nozioni teoriche acquisite, e affrontare le sfide delle moderne professioni nel settore.

Il corso di studi prepara inoltre ad una successiva laurea magistrale nei settori dell'ICT. Classe di laurea L-8 R - Ingegneria dell'informazione

> Modalità di accesso Accesso libero con provα

> > Lingua di erogazione Italiano

> > > Sede del corso Padova

Materie di studio

Matematica, fisica, teoria dei circuiti, automazione (analisi e controllo di sistemi dinamici, controllo digitale, automazione industriale), elettronica (misure elettroniche, elettronica analogica, sistemi digitali, microprocessori e DSP), informatica, (dati, algoritmi e programmazione), telecomunicazioni (segnali e sistemi), comunicazioni su fibra ottica e dispositivi, reti di telecomunicazioni, lingua inglese. Sono previste esperienze di laboratorio.

Ambiti occupazionali

Gli ambiti professionali tipici sono quelli dell'innovazione e dello sviluppo della produzione, della progettazione, della pianificazione e della programmazione, della gestione di sistemi di controllo e di elaborazione dei segnali, sia nella libera professione, sia nelle imprese manifatturiere o di servizi, o nelle amministrazioni pubbliche.

I laureati potranno trovare occupazione presso imprese che operano nei settori dell'automazione, dell'informatica, dell'elettronica, della bioingegneria, delle telecomunicazioni, sia in Italia che all'estero.

Information engineering

Caratteristiche e finalità

La laurea in Information Engineering, erogata completamente in lingua inglese, fornisce una formazione multidisciplinare nelle principali aree dell'ingegneria dell'informazione: automazione, elettronica, informatica e telecomunicazioni.

Le conoscenze metodologiche approfondite nel settore fisico/matematico e la multidisciplinarietà conferiscono ai/alle laureati/e elevate capacità di progetto, autonomia ed un know-how completo dei diversi aspetti dell'ICT (Information and communication technologies).

Nei molti corsi di laboratorio offerti si apprende ad applicare le nozioni acquisite sviluppando quindi capacità pratiche.

La figura professionale formata è quindi flessibile e capace di adattarsi in un settore, in continua evoluzione, che è uno dei principali motori dell'innovazione ed ha inoltre le competenze per poter proseguire in una qualsiasi laurea magistrale nel settore.

Materie di studio

Matematica, fisica, teoria dei circuiti, analisi dei sistemi e modelli, controllo automatico, elettronica digitale ed analogica, microprocessori, misure elettroniche, programmazione, algoritmi, basi di dati, machine learning, elaborazione dei segnali, reti di telecomunicazioni in fibra ottica e wireless, internet e sicurezza dell'informazione, inglese STEM (science, technology, engineering and mathematics).

Vari insegnamenti prevedono attività di laboratorio.

Classe di laurea L-8 R - Ingegneria dell'informazione

> Modalità di accesso Numero programmato

Lingua di erogazione Inglese

> Sede del corso Padova

Ambiti occupazionali

Gli ambiti professionali tipici sono quelli dell'innovazione, produzione, progettazione, pianificazione e programmazione, gestione di sistemi, sia nelle imprese manifatturiere o di servizi che nelle amministrazioni pubbliche in campo ICT.

La multidisciplinarietà e l'elevata capacità nell'uso dell'inglese (STEM) conferiscono alla figura professionale caratteristiche di elevato interesse per un mondo del lavoro sempre più internazionale e multisettoriale.

Corsi di Laurea Magistrale

BIOINGEGNERIA

Biologia e medicina offrono sempre nuovi problemi di grande interesse e complessità, che possono essere affrontati con i metodi dell'ingegneria. Il bioingegnere, la cui preparazione è caratterizzata in senso interdisciplinare, opera in diversi ambiti: tecnologico, industriale, scientifico, clinico e sanitario, allo scopo di descrivere, progettare e analizzare sistemi e processi d'interesse biologico-medico.

COMPUTER ENGINEERING

La Laurea Magistrale in Computer Engineering mira a trasmettere competenze e abilità di livello internazionale per la padronanza e lo sviluppo di sistemi IT avanzati. Il programma fornisce solide basi metodologiche e le competenze pratiche per affrontare applicazioni avanzate in diverse aree dell'ingegneria informatica.

CONTROL SYSTEMS ENGINEERING

La Laurea Magistrale in Control Systems Engineering forma professionisti di alto livello nel campo del controllo automatico, della robotica e del machine learning. Sono in grado di progettare modelli e sistemi di controllo per applicazioni industriali e hanno una solida conoscenza dei processi tecnologici per i quali devono essere progettati i sistemi di controllo.

CYBERSECURITY

La sicurezza dei sistemi di informazione è molto importante nel mondo d'oggi, in cui molti aspetti dalla nostra vita dipendono da dispositivi e reti di comunicazione. La laurea magistrale offre una formazione interdisciplinare che raccoglie contributi di informatica, ingegneria, statistica, scienze giuridico-economiche e organizzative, insieme a conoscenze specifiche dei principali domini applicativi della protezione dagli attacchi informatici. Il corso è interamente erogato in lingua inglese.

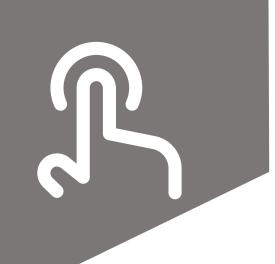
ELECTRONIC ENGINEERING

Questa laurea magistrale forma professionisti con una ricca preparazione sul piano scientifico, in grado di lavorare in diversi settori applicativi, inclusi l'automotive, l'energia, il biomedicale, l'automazione, le comunicazioni, le misure, la fotonica. L'ampia offerta didattica consente di approfondire argomenti specifici nell'ambito dell'elettronica, e di affrontare tematiche caratteristiche delle altre discipline dell'informazione. La vasta offerta di corsi con laboratorio garantisce una formazione efficace.

ICT FOR INTERNET AND MULTIMEDIA

L'ICT crea la società digitale, rendendo immediato l'accesso alle informazioni. La laurea magistrale internazionale, in lingua inglese, forma ingegneri che trovano soluzioni innovative per l'architettura delle reti, la generazione ed elaborazione di segnali ottici, radio e quantistici per le nuove applicazioni di Internet delle cose, gestione intelligente dell'energia, telemedicina e realtà virtuale.

Il Dipartimento di Ingegneria Industriale rappresenta un polo di riferimento del Nordest per ricerca, formazione e trasferimento tecnologico in numerose aree dell'Ingegneria che comprendono l'Ingegneria Aerospaziale, Chimica, Elettrica, dell'Energia, dei Materiali, Meccanica e della Sicurezza Civile e Industriale. La missione del Dipartimento è promuovere l'innovazione dell'ingegneria industriale e la competitività attraverso l'eccellenza nella ricerca e della formazione.


Il Dipartimento di Ingegneria Industriale ospita attualmente 48 laboratori di ricerca nei quali lavorano oltre 500 tra docenti, ricercatori, studenti di dottorato e personale tecnico e amministrativo. Circa il 50% del fatturato deriva da collaborazioni con industrie e centri di ricerca nazionali ed internazionali; inoltre, le diverse aziende spinoff create negli anni recenti testimoniano il fermento imprenditoriale del dipartimento.

L'area Industriale dell'Ingegneria si interessa di attività, componenti, materiali e macchine storicamente associate all'industria manifatturiera, ma ora estese anche ad altre aree di impiego quali società di servizi, enti pubblici e privati e centri di ricerca. È sicuramente l'area più variegata all'interno di Ingegneria, suddivisa in sottoaree riconducibili ai settori industriali della meccanica, della chimica e dei materiali, dell'energia, della gestione industriale e dei processi di business.

In ciascuna sottoarea si sono sviluppati ambiti di competenze per applicazioni specifiche destinate all'innovazione di prodotti, processi e sistemi nei settori aeronautico, spaziale, industria di processo, materiali avanzati, meccanica di precisione, automazione e robotica, mobilità elettrica, energia, produzione manifatturiera, logistica, sicurezza civile e industriale, bioingegneria industriale, organizzazione e gestione d'impresa.

Il percorso formativo dell'ingegnere industriale fornisce competenze di alto livello grazie al forte collegamento sia con il territorio che con l'attività di ricerca a livello internazionale. Gli allievi ingegneri industriali acquisiscono conoscenze e competenze tecnico-scientifiche che spaziano dalle nanotecnologie alle tecnologie spaziali, dalla produzione di energia da fonti tradizionali e rinnovabili alle applicazioni elettriche, dalla motoristica alle costruzioni meccaniche, dalla tecnologia meccanica alla robotica, dai processi produttivi chimici e farmaceutici alla gestione d'impresa.

Al Dipartimento di Ingegneria Industriale afferiscono 4 corsi di Laurea, 7 corsi di Laurea Magistrale (cinque dei quali erogati interamente in lingua inglese), 1 corso di Dottorato di ricerca e 5 corsi di Master.

Corsi di Laurea

Dipartimento di Ingegneria Industriale

Lauree triennali

Ingegneria aerospaziale

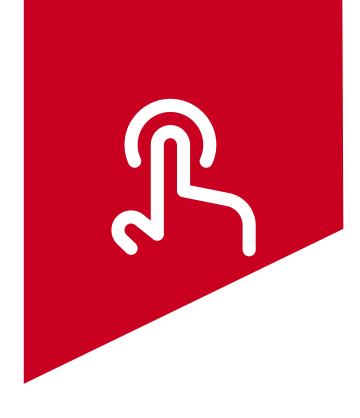
Ingegneria chimica e dei materiali

Ingegneria dell'energia

Ingegneria meccanica

Lauree magistrali

- Aerospace engineering
- EN Chemical and process engineering
- **EN** Electrical engineering
- Energy engineering


 Ingegneria della sicurezza civile e industriale

 Ingegneria meccanica
- Materials engineering

Servizio informazioni per la didattica DII

orienta.dii@unipd.it

Ingegneria aerospaziale

Caratteristiche e finalità

Il percorso di studio interdisciplinare è finalizzato alla progettazione, alla gestione e al collaudo di veicoli e vettori aeronautici e spaziali e dei relativi sottosistemi per applicazioni civili, industriali e scientifiche.

Nelle applicazioni più squisitamente spaziali, inoltre, è indispensabile possedere anche gli strumenti scientifici di base utili per operare in modo coordinato con altri ambiti scientifici quali l'astronomia, le scienze planetarie, le bioscienze, la fisica della materia.

Materie di studio

Lo studente deve acquisire una solida preparazione di base tecnico-scientifica applicandosi, oltre che ai campi comuni all'ingegneria industriale (matematica, fisica, geometria, disegno, meccanica dei fluidi, meccanica dei solidi, termodinamica, scambio termico, elettrotecnica, e altri), anche a filoni culturali specifici quali l'aerodinamica, le strutture aerospaziali, la dinamica del volo, gli impianti e i sistemi di bordo.

Ambiti occupazionali

Poiché le esperienze didattiche in Italia e all'estero dimostrano che la formazione di una figura professionale, in grado di operare efficacemente nel campo dell'ingegneria aerospaziale, richiede un percorso formativo più ampio di quello triennale, il significato professionalizzante che è possibile attribuire alla laurea triennale concerne il supporto ad attività di progettazione, ge-

Classe di laurea L-9 R - Ingegneria industriale

> Modalità di accesso Numero programmato

Lingua di erogazione Italiano

> Sede del corso Padova

stione e collaudo, nello svolgimento di un ruolo peraltro non trascurabile come dimostrano figure presenti nella maggiori aziende aerospaziali nazionali ed internazionali.

Ingegneria chimica e dei materiali

Caratteristiche e finalità

Il corso offre una solida preparazione scientifica multidisciplinare, in un vasto ambito di specializzazioni: dall'impiantistica chimica al disinquinamento, dalla valutazione d'impatto ambientale di prodotti e processi alla sicurezza e alle applicazioni biotecnologiche, dalle tecnologie di fabbricazione di materiali innovativi e tradizionali alle tecniche più avanzate per la caratterizzazione delle diverse classi di materiali.

Materie di studio

Chimica generale e inorganica, analisi matematica, economia e organizzazione aziendale, chimica organica, fisica, fondamenti di algebra lineare e geometria, calcolo numerico, elementi di fisica, fenomeni di trasporto, fondamenti di scienza dei materiali, meccanica dei solidi, termodinamica, inglese, impiantistica di processo, scienza e tecnologia dei materiali polimerici, metallurgia fisica, processi industriali chimici, elettrochimica, elettrotecnica, strumentazione analitica e tecniche di caratterizzazione, impianti di trattamento di effluenti inquinanti liquidi, statistica applicata all'Ingegneria industriale, tirocinio.

Ambiti occupazionali

Gli sbocchi occupazionali comprendono industrie di trasformazione di materie prime manifatturiere, industria chimica, farmaceutica, alimentare e biotecnologica, attività di produzione e trasformazione di energia, società di servizi per la gestione di apparecchiature e impianti, imprese di progettazione e centri di ricerca e sviluppo di aziende pubbliche e private, enti operanti

Classe di laurea L-9 R - Ingegneria industriale


Modalità di accesso Accesso libero con provα

> Lingua di erogazione Italiano

> > Sede del corso Padova

nel settore del trattamento dei rifiuti solidi, liquidi ed aeriformi, aziende ed enti nei quali è richiesta la figura del responsabile della sicurezza nell'ambiente di lavoro e nella protezione ambientale.

Ingegneria dell'energia

Caratteristiche e finalità

Il corso fornisce le conoscenze necessarie a operare nell'ambito della produzione, trasmissione, distribuzione e uso dell'energia nelle sue diverse forme (meccanica, elettrica, termica, chimica), valutando le interazioni con gli aspetti ambientali, economici e normativi.

Gli ambiti di studio e di occupazione sono connessi agli aspetti applicativi dell'energia in termini di economia e consumi, di conversione e uso nelle macchine e negli impianti industriali e civili (elettrici, meccanici, termici), di impatto ambientale, di generazione e impiego delle energie alternative e rinnovabili.

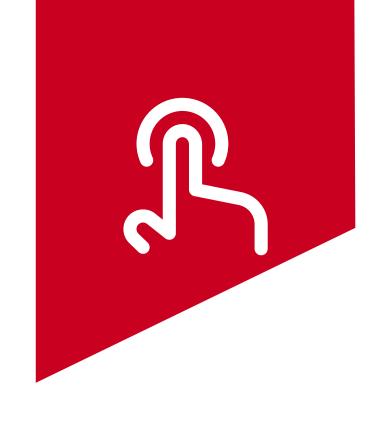
Materie di studio

Matematica, calcolo numerico, fisica, chimica, disegno tecnico industriale, fisica tecnica, elettrotecnica, macchine, macchine elettriche, costruzioni meccaniche, meccanica dei fluidi, impianti elettrici, impianti energetici, energetica, enertronica, controlli automatici, e altri insegnamenti a scelta dello studente, come tecnica ed economia dell'energia, materiali, segnali e sistemi, meccanica applicata alle macchine.

Ambiti occupazionali

Chi si laurea in Ingegneria dell'Energia trova rapidamente occupazione nelle imprese che producono e distribuiscono energia, negli uffici tecnici delle pubbliche amministrazioni, nelle aziende produttrici di apparecchiature per l'uso del calore e del freddo o per la conversione energetica, in aziende che producono apparecchiature e sistemi elettrici.

Classe di laurea L-9 R - Ingegneria industriale


> Modalità di accesso Accesso libero con prova

> > Lingua di erogazione Italiano

> > > Sede del corso Padova

Altre opportunità sono date dall'innovazione tecnologica, dal monitoraggio e dalla bonifica ambientali, dagli studi professionali che si occupano di impiantistica civile e industriale o di valutazioni di impatto ambientale, dai centri di ricerca.

Ingegneria meccanica

Caratteristiche e finalità

Il corso prevede due curricula: Industriale e Formativo. Il curriculum Industriale, ideato per un impiego immediato nel mercato del lavoro, offre una formazione orientata alle funzioni di progettazione, produzione e gestione in ambito industriale di componenti, macchine e sistemi meccanici.

Il curriculum formativo ha lo scopo di preparare con solide basi teoriche alla Laurea Magistrale, dove saranno sviluppate le competenze nella progettazione e produzione di prodotti e sistemi meccanici.

Materie di studio

Matematica, fisica, disegno tecnico industriale, economia e organizzazione aziendale, materiali, fisica tecnica, meccanica applicata alle macchine, meccanica dei solidi, meccanica dei fluidi, macchine, elettrotecnica, impianti meccanici, costruzione di macchine, tecnologia meccanica, misure, modellazione geometrica, progettazione assistita di strutture meccaniche, produzione assistita da calcolatore, tirocinio.

Ambiti occupazionali

L'ingegnere meccanico trova rapidamente impiego in tutti i principali settori industriali, in studi di ingegneria, in uffici tecnici di enti pubblici e privati.

Esempi tipici sono la progettazione e la produzione di componenti meccanici, macchine e impianti; la progettazione di processi per l'industria meccanica; la gestione di reparti; la pianificazione e organizzazione di attività di manutenzione; la partecipazione allo staff direttivo di uffici tecnici, di centrali elettriche, di aziende municipa-

Classe di laurea L-9 R - Ingegneria industriale

> Modalità di accesso Accesso libero con provα

> > Lingua di erogazione *Italiano*

Sede del corso Padova

lizzate o assimilate; lavoro in studi professionali, in laboratori industriali ed in centri di ricerca.

Corsi di Laurea Magistrale

DII / Dipartimento di Ingegneria Industriale

AEROSPACE ENGINEERING

Il corso di Laurea magistrale (interamente erogato in lingua inglese) ha lo scopo di fornire una preparazione specifica rivolta a progettazione, gestione e avanzamento tecnologico di veicoli e vettori aeronautici e spaziali e dei relativi sottosistemi per applicazioni civili, industriali e scientifiche. Lo studente deve possedere la curiosità intellettuale che gli consenta di affrontare la richiesta di innovazione tecnologica tipica di un settore avanzato.

CHEMICAL AND PROCESS ENGINEERING

Il corso (completamente erogato in lingua inglese) forma professionisti/e capaci di modificare lo stato chimico, biochimico e fisico delle sostanze, dalla scala molecolare a quella industriale, per progettare e gestire in modo sostenibile processi e impianti che realizzino su larga scala prodotti ad elevato contenuto tecnologico (per es. combustibili tradizionali e avanzati come idrogeno e biofuels, fibre sintetiche, polimeri e biopolimeri, gomme, detergenti, prodotti alimentari, farmaci).

ELECTRICAL ENGINEERING

Il corso (completamente erogato in lingua inglese) dà una preparazione approfondita ma ad ampio spettro sia nelle applicazioni convenzionali che in quelle più innovative dell'energia elettrica (impiantistica, elettromeccanica, generazione da fonti rinnovabili, propulsione elettrica, applicazioni industriali, ecc.), valida per l'inserimento in un ambito più ampio del solo settore elettrico.

ENERGY ENGINEERING

Il corso di studio magistrale in Energy engineering (completamente erogato in lingua inglese) forma un tecnico di alta qualifica in grado di:

- operare nell'ambito della progettazione avanzata,
- saper integrare sistemi di tipo convenzionale e sistemi energetici a fonte rinnovabile,
- essere competente nel settore della produzione di energia e della ottimizzazione e gestione degli impianti energetici.

INGEGNERIA DELLA SICUREZZA CIVILE E INDUSTRIALE

Il corso forma un professionista che, accanto a solide conoscenze di base, acquisisce approfondite capacità nel settore dell'analisi del rischio di impianti industriali e edifici civili, delle modalità tecniche gestionali della qualità, della sicurezza delle strutture civili e dei processi industriali e negli ambienti di lavoro. Il laureato sarà caratterizzato da capacità professionali di "problem solving". Possono accedere al corso di laurea tutti gli studenti in possesso di una laurea nella Classe L-7 Ingegneria Civile e Ambientale o nella Classe L-9 Ingegneria Industriale.

INGEGNERIA MECCANICA

Fornisce solide competenze nella progettazione, produzione e gestione di prodotti e sistemi meccanici ad alto contenuto tecnologico e di innovazione. Indirizzi: Costruzioni meccaniche; Sistemi meccanici collaborativi e assistivi; Robotica e automazione; Veicoli stradali; Macchine per la propulsione; Energy sustainability in industry; Heating, refrigeration, air conditioning; Produzione e tecnologie manifatturiere; Gestione della produzione; Progetto e fabbricazione con i materiali polimerici e compositi.

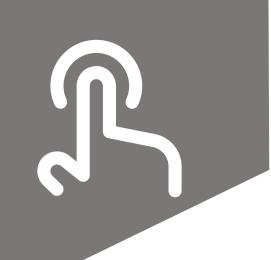
MATERIALS ENGINEERING

Il corso di studio magistrale in Energy engineering (completamente erogato in lingua inglese) forma un tecnico di alta qualifica in grado di: lavorare nell'ambito della progettazione avanzata, integrare sistemi di tipo convenzionale e sistemi energetici a fonte rinnovabile, operare nel settore della produzione di energia e della ottimizzazione e gestione degli impianti energetici.

Le attività didattiche, di ricerca e di rapporti con le imprese del Dipartimento di Tecnica e Gestione dei sistemi industriali (DTG) sono articolate e interdisciplinari, integrando gli ambiti dell'Ingegneria Industriale, dell'Ingegneria Economico-Gestionale e dell'Ingegneria dell'Informazione.

Il DTG si avvale di specifiche competenze nell'ambito dell'Ingegneria Industriale per studiare, progettare e realizzare nuovi prodotti, processi, impianti industriali, componenti ed impianti per il controllo termico, utilizzando materiali convenzionali ed innovativi, moderne tecniche di progettazione e di gestione dei sistemi industriali, in uno scenario di competitività e sostenibilità.

Le consolidate competenze del DTG nell'Ingegneria Economico-Gestionale e nella Statistica (analisi dei Big Data, machine learning) si applicano alla progettazione integrale delle supply chain nella logistica, allo sviluppo di nuovi prodotti, alla gestione di operations, al marketing e vendite, alla trasformazione digitale ed infine agli aspetti strategici, organizzativi, economici ed energetici di aziende di produzione e servizi.


Il DTG presenta inoltre alcune competenze specifiche nei campi dell'Ingegneria dell'Informazione e dell'Ingegneria Elettrica (elettronica di potenza ed elettronica per l'energia, sensoristica e controllo evoluto dei sistemi meccatronici e robotici, azionamenti elettrici e sistemi per il confinamento magnetico dei plasmi, informatica per sistemi uomo-macchina, protocolli e reti di comunicazione industriale per l'Industria 4.0).

Al Dipartimento afferiscono tre corsi di laurea triennale e quattro corsi di laurea magistrale, in Ingegneria Gestionale (con un canale in italiano ed uno in inglese con anche studenti internazionali), Ingegneria dell'Innovazione del Prodotto, Ingegneria Meccatronica e Food Industry Engineering.

Al Dipartimento afferiscono tre corsi di laurea triennale (Ingegneria Gestionale, Ingegneria dell'Innovazione del Prodotto, Ingegneria Meccatronica) e quattro corsi di laurea magistrale (Ingegneria Gestionale, con un canale in italiano e uno in inglese per studenti internazionali, Mechanical Engineering for Product Innovation, Mechatronics Engineering e Food Industry Engineering).

Presso il DTG sono attivi anche due corsi di Dottorato di ricerca, uno dedicato all'Ingegneria Meccatronica e dell'Innovazione Meccanica del Prodotto, e l'altro indirizzato all'Ingegneria Economico Gestionale. Nelle ultime due valutazioni ministeriali sulla qualità della ricerca, il DTG si è collocato ai vertici delle graduatorie nazionali. Nel 2018-2022 è stato premiato dal MIUR come Dipartimento di Eccellenza, ricevendo un finanziamento di 8 milioni di euro per il reclutamento di ricercatori e la creazione e il potenziamento di laboratori e attrezzature di ricerca all'avanguardia. Dall'Anno Accademico 2021/2022, il Dipartimento dispone di una nuova sede per la didattica dotata di tecnologie multimediali di ultimissima generazione per la formazione in presenza e a distanza.

I più recenti dati sull'occupazione dei laureati presso il DTG confermano un rapido inserimento nel mondo del lavoro e notevoli potenzialità di crescita professionale nei settori produttivi e dell'erogazione di servizi.

Corsi di Laurea

Dipartimento di Tecnica e Gestione dei sistemi industriali

Lauree triennali

Ingegneria gestionale

Ingegneria meccatronica

Ingegneria dell'innovazione del prodotto

Lauree magistrali

Ingegneria gestionale

Mechatronics engineering

EN Food industry engineering


Mechanical engineering for product innovation

Servizio informazioni per la didattica DTG

segreteria@gest.unipd.it

DTG / Dipartimento di Tecnica e Gestione dei Sistemi Industriali

Ingegneria gestionale

Caratteristiche e finalità

Il corso mira a formare un ingegnere con competenze multidisciplinari in grado di ricoprire ruoli organizzativi e manageriali, per i quali sono richieste conoscenze di base anche di natura tecnico-scientifica.

Il percorso di studi in ingegneria gestionale permette di ottenere capacità distintive, apprezzate e richieste dal mondo del lavoro, riguardanti la gestione di processi di innovazione e cambiamento, che caratterizzano in misura sempre più significativa le imprese, nelle loro componenti tecnologiche, economiche e organizzative.

Una base culturale ampia, la conoscenza delle tecnologie nelle principali aree ingegneristiche, oltre a una solida preparazione nelle discipline e metodologie di base (Matematica e Fisica, Informatica, Economia aziendale e Statistica) sono i pilastri su cui si fonda la figura dell'ingegnere gestionale.

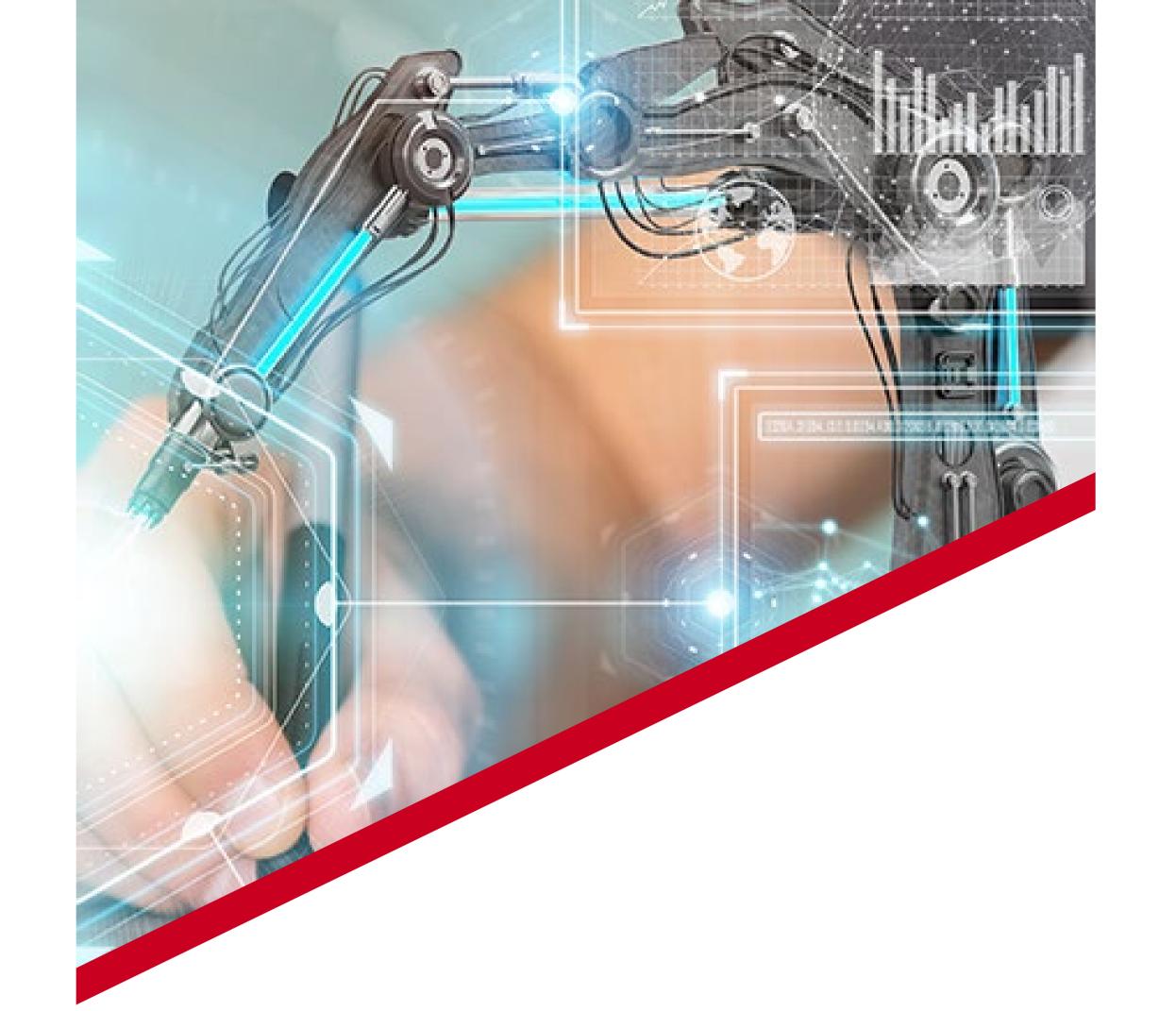
Materie di studio

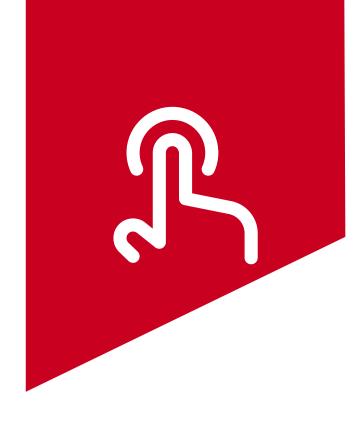
Analisi matematica, algebra lineare e geometria, fondamenti di informatica, fisica e fisica tecnica, statistica, economia e organizzazione aziendale, materiali metallici, fondamenti di meccanica, principi di ingegneria elettrica, impianti meccanici, controlli automatici, costruzione di macchine, economia aziendale e applicata, ricerca operativa, organizzazione della produzione e dei sistemi logistici, tecnologia meccanica, sistemi informativi, lingua inglese.

Altri due insegnamenti sono scelti liberamente dallo studente tra: acustica applicata, organizzazione e risorse umane, macchine e sistemi per l'energia e l'ambiente, qualità ed organizzazione, metodi e modelli Classe di laurea L-9 R - Ingegneria industriale

> Modalità di accesso Accesso libero con prova

> > Lingua di erogazione Italiano


> > > Sede del corso Vicenza


per l'analisi di Big Data, tecnologie chimiche per l'ingegneria, tecnologia meccanica e gestione e analisi dei dati.

Ambiti occupazionali

Il laureato trova occupazione nelle imprese di tutti i settori industriali e dei servizi, nella consulenza e nelle organizzazioni pubbliche.

Ambiti professionali tipici sono l'analisi e la gestione dei processi produttivi, lo sviluppo di nuovi prodotti, la valutazione economico- finanziaria e la gestione organizzativa di progetti complessi, la gestione delle attività di marketing e commerciali, la gestione snella volta all'eliminazione di ogni tipo di spreco, la definizione della strategia d'impresa.

DTG / Dipartimento di Tecnica e Gestione dei Sistemi Industriali

Ingegneria meccatronica

Caratteristiche e finalità

Il corso forma ingegneri in grado di realizzare l'integrazione ed il controllo di componenti meccanici ed elettronici, per la realizzazione di sistemi di automazione per l'industria meccanica e manifatturiera.

Il corso fornisce le conoscenze fondamentali nel settore dell'ingegneria dell'informazione e dell'ingegneria industriale, con particolare attenzione agli aspetti interdisciplinari.

Materie di studio

Analisi matematica, informatica, fisica, algebra lineare e geometria, leghe metalliche per la meccatronica, inglese, elettrotecnica, fisica tecnica, progettazione strutturale, segnali e sistemi, controlli automatici, elettronica analogica, meccanica applicata alle macchine, teoria dei circuiti digitali, microcontrollori e DSP, impianti industriali automatizzati, macchine e azionamenti elettrici, misure per l'automazione, controllori e reti di comunicazioni industriali, economia e organizzazione aziendale, laboratorio di elettronica, laboratorio di informatica industriale, sicurezza elettrica nei sistemi meccatronici, tecnologie chimiche per l'ingegneria, laboratorio di azionamenti elettrici.

Classe di laurea L-8 R - Ingegneria dell'informazione

> Modalità di accesso Accesso libero con provα

> > Lingua di erogazione Italiano

> > > Sede del corso Vicenza

Ambiti occupazionali

Aziende meccaniche e manifatturiere che progettano e producono macchine e sistemi con dispositivi elettronici integrati, aziende elettromeccaniche ed elettroniche che progettano e producono apparecchiature e sistemi di controllo per macchine e sistemi meccanici e aziende dei settori domotico, siderurgico, alimentare, orafo, tessile e della carta.

DTG / Dipartimento di Tecnica e Gestione dei Sistemi Industriali

Ingegneria dell'innovazione del prodotto

Caratteristiche e finalità

L'ingegnere dell'Innovazione del Prodotto è un moderno ingegnere industriale, con competenze nell'area dell'ingegneria meccanica, capace di studiare, modellare, progettare e realizzare nuovi prodotti, processi ed impianti industriali utilizzando materiali convenzionali ed innovativi (leghe metalliche, polimeri, materiali compositi, materiali ceramici, nanomateriali), le più moderne tecniche di progettazione meccanica (statiche, a fatica e dinamiche, oggi quasi necessariamente con l'assistenza di un calcolatore) e di simulazione, in uno scenario di competitività e sostenibilità industriale, tenendo conto, in particolare, della necessità di contenere i costi in tutta la vita del prodotto attraverso l'attenta ingegnerizzazione dello stesso e la progettazione integrata del sistema produttivo.

È pertanto un ingegnere con competenze focalizzate su tre driver fondamentali del successo dei nuovi prodotti: l'innovazione nei materiali, nelle tecniche di progettazione e nei processi ed impianti produttivi.

Materie di studio

Il Corso di Laurea fornisce le conoscenze fondamentali nelle discipline di base della matematica, della fisica e dell'informatica e nell'ambito dell'ingegneria industriale con riferimento in particolare alla scienza dei materiali metallici e non metallici, alla progettazione meccanica strutturale, funzionale e dinamica delle macchine, alla tecnologia ed impiantistica meccanica, ai processi ed ai sistemi di produzione, alle tecniche CAD e CAM, oltre che ai sistemi energetici, alle macchine elettriche e a flu-

Classe di laurea L-9 R - Ingegneria industriale

> Modalità di accesso Accesso libero con prova

> > Lingua di erogazione Italiano

> > > Sede del corso Vicenza

ido. La multidisciplinarità del percorso formativo permette l'accesso a più di un corso di laurea magistrale.

Ambiti occupazionali

Il percorso triennale è strutturato in modo tale da permette anche a studenti che decidano di non proseguire gli studi a livello magistrale di acquisire conoscenze con elevata valenza formativa e professionalizzante, immediatamente spendibili nel mondo del lavoro.

I settori nei quali potrà inserirsi con maggiore efficacia sono quelli della meccanica di precisione, della siderurgia e metallurgia, delle materie plastiche, dell'impiantistica meccanica, degli apparati biomedicali, oltre che nelle tradizionali aziende locali nel campo termotecnico, alimentare, orafo, tessile, del cuoio, e del packaging industriale.

Corsi di Laurea Magistrale

DTG / Dipartimento di Tecnica e Gestione dei Sistemi Industriali

INGEGNERIA GESTIONALE con un curriculum in italiano e uno in inglese

Il Corso di Laurea Magistrale in Ingegneria Gestionale è finalizzato alla preparazione di una figura professionale di alta qualificazione, specializzata nella progettazione, gestione e innovazione di sistemi produttivi e di servizi caratterizzati da elevata complessità. Le competenze acquisite, di natura tecnico-produttiva, organizzativa-gestionale, ed economico-finanziaria, permettono all'ingegnere gestionale magistrale formatosi all'Università di Padova di comprendere le diverse componenti, di per sé eterogenee ed interconnesse, della gestione di sistemi complessi, e di governare efficacemente le fasi di analisi, progettazione, implementazione e gestione di soluzioni innovative.

FOOD INDUSTRY ENGINEERING

Il Corso di Laurea Magistrale in Food Industry Engineering (completamente erogato in lingua inglese) ha l'obiettivo di formare una figura capace di ideare, pianificare, progettare e gestire l'ingegneria dei processi, impianti, sistemi e servizi tipici dell'industria alimentare con particolare attenzione ai problemi della sicurezza. Il corso è transdisciplinare con una forte presenza dell'Ingegneria Industriale e con il contributo di altre aree scientifiche quali l'Igiene degli Alimenti, la Microbiologia, le Tecnologie Alimentari. La preparazione dei laureati in Food Industry Engineering è rivolta a un gran numero di sbocchi occupazionali, sia nel settore privato che in quello pubblico, con particolare riferimento ad aziende che producono prodotti alimentari, aziende che producono macchine ed impianti per il settore alimentare, aziende del settore della distribuzione organizzata e dei servizi.

MECHANICAL ENGINEERING FOR PRODUCT INNOVATION

Mechanical Engineering for Product Innovation, erogato in lingua inglese, è un moderno corso di Laurea Magistrale in Ingegneria Meccanica che ha lo scopo di formare un ingegnere meccanico con un profilo allineato alle più moderne tendenze in campo internazionale. Un ingegnere capace quindi di studiare, progettare e realizzare nuovi prodotti ed i relativi processi industriali, alla luce delle più recenti innovazioni nell'utilizzo delle metodologie di progettazione meccanica e dei materiali avanzati, nelle tecnologie produttive e negli impianti logistici e di produzione. Il corso di Laurea offre sia insegnamenti teorici sia insegnamenti applicati o orientati alla ricerca di alto livello, all'interno di un quadro di competitività industriale e sostenibilità, fornendo agli studenti conoscenze e competenze avanzate per modellare, progettare e realizzare i prodotti, i processi e i sistemi industriali del futuro.

MECHATRONICS ENGINEERING

La laurea magistrale in Mechatronics Engineering forma ingegneri con competenze orientate alla progettazione nelle aree dell'ingegneria elettrica, meccanica e dell'informazione. I laureati magistrali sono in grado di progettare, implementare e gestire dispositivi e sistemi con una elevata integrazione tra componenti meccaniche ed elettroniche. Il programma ha quindi l'obiettivo di fornire una preparazione interdisciplinare, che consenta agli ingegneri meccatronici di integrare le moderne tecnologie, come sensori, attuatori e azionamenti elettrici in un progetto elettromeccanico, controllato in tempo reale da computer embedded. Questi sistemi risultano essenziali nei settori industriali dell'automazione, della manifattura, dell'energia, della robotica e dell'automotive.

Le sedi di Ingegneria

Dipartimento di Ingegneria Civile, Edile e Ambientale

Via Marzolo, 9 - 35131, Padova

Dipartimento di Ingegneria dell'Informazione

Via Gradenigo, 6/b - 35131, Padova

Dipartimento di Ingegneria Industriale

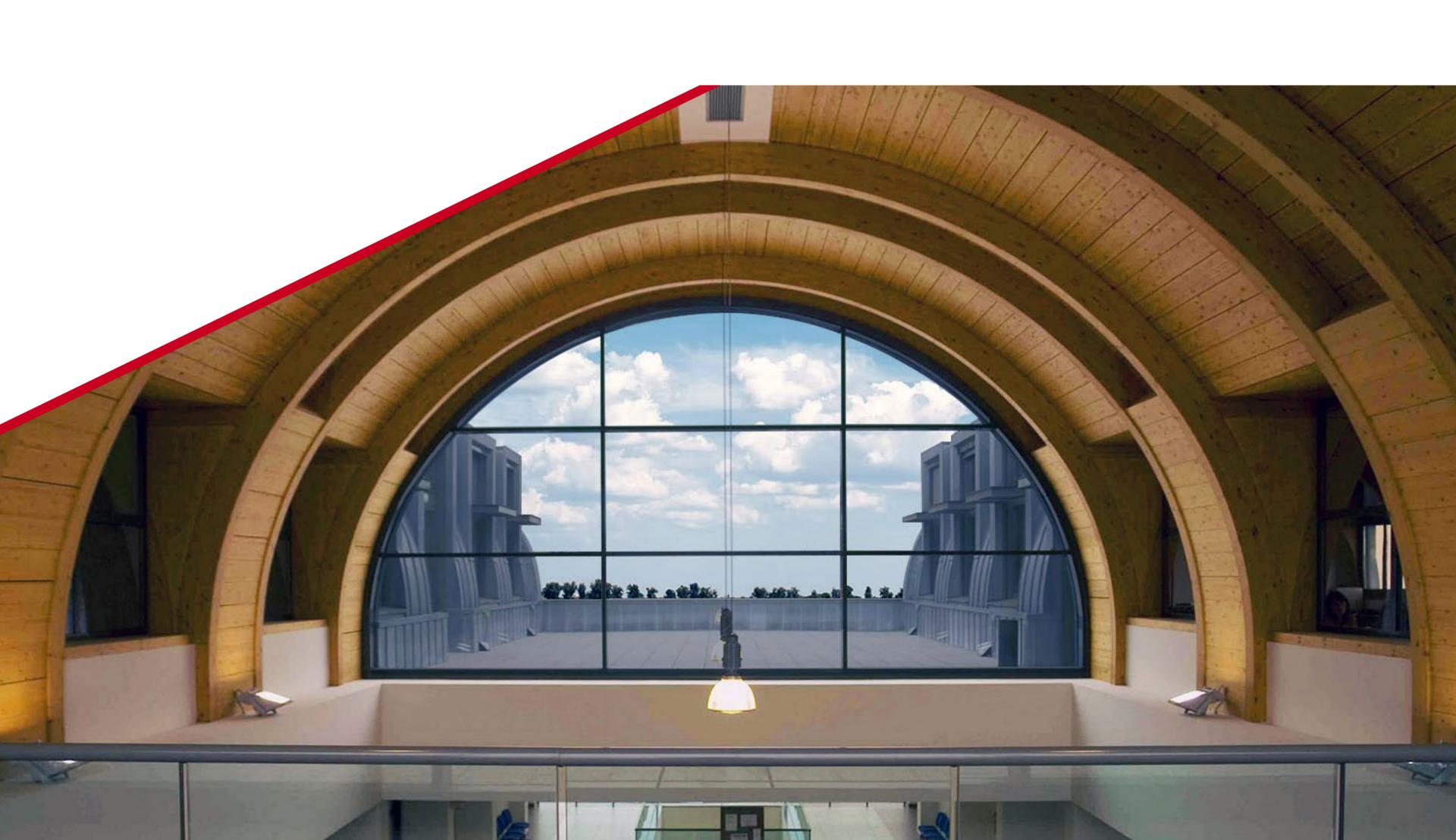
Via Gradenigo, 6/a - 35131, Padova

Dipartimento di Tecnica e Gestione dei sistemi industriali

Stradella S. Nicola, 3 - 36100, Vicenza

Didattica

Viale Margherita, 87 - 36100, Vicenza


Scuola di Ingegneria

Lungargine del Piovego, 1 35131, Padova

Sede di Rovigo

DICEA - Corso di Laurea Magistrale in Water and Geological Risk Engineering **DII** - Laboratorio Te.Si.

Viale Porta Adige, Piazza Bruno Migliorini, 45 - 45100 Rovigo

ingegneria.unipd.it

