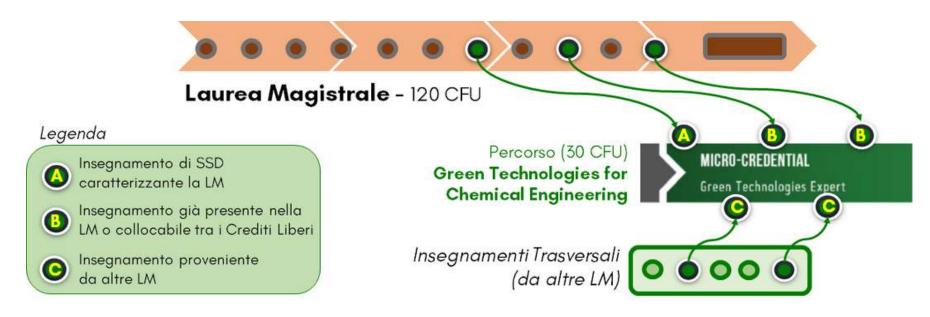


# Percorsi di formazione - Green Technologies Expert

- Green Technologies for Chemical Engineering
- Green Technologies for Mechatronic Engineering
- Green Technologies for Electrical Engineering
- Green Electronics
- Green Technologies for Mechanical Engineering
- Green Technologies for Sustainable Environmental Engineering
- Materials Engineering for Sustainability

### Green Technologies for Chemical Engineering - LM Ingegneria Chimica e dei Processi Industriali [LM-22]


Struttura: 18 CFU nel percorso attuale (esami obbligatori o di indirizzo o a scelta libera); 12 aggiuntivi nel percorso abilitante

MICRO-CREDENTIAL
Green Technologies Expert

Motivazioni. L'Ingegneria Chimica e dei Processi Industriali si occupa della progettazione di impianti e di processi chimici di diversa natura, in ottica ambientale e sostenibile. Questa Laurea Magistrale permette di acquisire un ampio spettro di conoscenze e competenze multidisciplinari, relative non solo alle tecnologie specifiche più progredite ma anche la visione strategica necessaria ad affrontare con successo le sfide tecnologiche e socio-economiche del futuro relative alle tecnologie Green.

Opportunità. Ampio spazio è dedicato alla progettazione di impianti chimici di diversa natura (organica, dei materiali polimerici, alimentare, farmaceutica), dei processi industriali avanzati, della sostenibilità e della sicurezza, dell'analisi dei dati di processo, della gestione ambientale strategica e recupero dei siti contaminati, dei processi della chimica verde. La flessibilità di configurazione del percorso formativo con le molteplici opzioni di scelta dei vari insegnamenti permette inoltre utili approfondimenti su tematiche di diversa natura nell'ambito delle applicazioni delle Green Technologies.

Profilo. Il laureato in "Ingegneria Chimica e dei processi Industriali" con la qualifica di esperto in "Green Technologies" sarà in grado di interagire efficacemente con professionisti e ambienti caratterizzati da competenze diverse da quella chimica e potrà quindi trovare impiego come operatore di attività connesse alla gestione e al trattamento degli impianti e dei processi chimici sia nelle forme consolidate che in quelle derivanti dalle applicazioni più avanzate. Questo tipo di preparazione è stata e continua ad essere particolarmente appropriato all'integrazione nella struttura produttiva del territorio, caratterizzata da numerose realtà aziendali nei settori dei processi di trasformazione della materia e dell'energia, della chimica organica e inorganica, farmaceutica ed alimentare nell'ottica di un approccio verde, efficiente e sostenibile.



### Green Technologies for Chemical Engineering - LM Ingegneria Chimica e dei Processi Industriali [LM-22]

MICRO-CREDENTIAL
Green Technologies Expert

Struttura: da 18 a 12 CFU nel percorso attuale (esami obbligatori o di indirizzo o a scelta libera); da 12 a 18 CFU aggiuntivi nel percorso abilitante



| INSEGNAMENTO                                  | SSD                      | CFU | LM DI EROGAZIONE                                        |
|-----------------------------------------------|--------------------------|-----|---------------------------------------------------------|
| Process Technologies for Carbon-Neutral Fuels | ING-IND/25               | 6   | Energy Engineering                                      |
| Polymer processing<br>and recycling           | ING-IND/27               | 6   | Ingegneria Chimica e dei Processi Industriali           |
| Processi chimici innovativi                   | ING-IND/27               | 6   | Ingegneria Chimica e dei Processi Industriali           |
| Membrane separation processes                 | ING-IND/27               | 6   | Ingegneria Chimica e dei Processi Industriali           |
| Strategic Environmental Management            | ING-IND/27               | 6   | Ingegneria Chimica e dei Processi Industriali           |
| 1 su 5                                        |                          |     |                                                         |
| Combustion                                    | ING-IND/23               | 6   | Energy Engineering                                      |
| Electrochemical Energy Storage Technologies   | CHIM/07                  | 6   | Ingegneria Chimica e dei Processi Industriali           |
| Reattori biochimici                           | ING-IND/25               | 6   | Biotecnologie Industriali – frequenza obbilgatori       |
| D: l                                          | ING-IND/34<br>ING-IND/22 | ,   | Adantariala Francisca arinar / Indonesia dai Adantarial |
| Biopolymers engineering                       | BIO/10                   | 6   | Materials Engineering / Ingegneria dei Material         |
| Energy Economics                              | SECS-P/06                | 9   | Energy Engineering / Ingegneria Energetica              |
| Energy systems                                | ING-IND/09               | 9   | Energy Engineering                                      |
| Economics for the CIRCULAR ECONOMY            | SECS-P/01                | 6   | Sustainable chem. and tech. for circular econor         |
| Min 6 CFU - Max 12 CFU                        |                          |     |                                                         |
| Reattori biochimici                           | ING-IND/25<br>ING-IND/34 | 4 2 | Biotecnologie Industriali                               |
| Biopolymers engineering                       | ING-IND/22               | 6   | Materials Engineering / Ingegneria dei Material         |
| Energy Economics                              | SECS-P/06                | 9   | Energy Engineering / Ingegneria Energetica              |
| Energy systems                                | ING-IND/09               | 9   | Energy Engineering                                      |
| Economics for the CIRCULAR ECONOMY            | SECS-P/01                | 6   | Sustainable chem. and tech. for circular econo          |
| Design Of Innovative Processes And Plants     | ING-IND/25               | 6   |                                                         |
| For Industrial Waste Treatment                |                          |     |                                                         |
| 2 su 6                                        |                          |     |                                                         |
| Min 12 CFU - Max 18 CFU                       |                          |     |                                                         |

Nota: 1 + 1 = 24 CFU

#### Green Technologies for Mechatronic Engineering - LM Ingegneria Meccatronica

Struttura: 18 CFU nel percorso attuale (esami obbligatori o di indirizzo o a scelta libera); 12 CFU aggiuntivi nel percorso abilitante

MICRO-CREDENTIAL
Green Technologies Expert

Motivazioni. Gli ingegneri meccatronici hanno una formazione trasversale a grandi aree dell'ingegneria, quali l'ingegneria elettrica, meccanica ed elettronica, ed hanno la capacità di progettare e coordinare sistemi complessi sia dal punto di vista meccanico che elettronico. Per fornire ai laureati magistrali maggiore interdisciplinarietà nell'ambito delle tecnologie green, il profilo si completerà con le competenze necessarie per una progettazione in grado di coniugare l'utilizzo di materiali innovativi con un'elevata efficienza energetica.

**Opportunità**. La presenza, nella sede di Vicenza, dei corsi di Laurea in Ingegneria dell'Innovazione del Prodotto e in Ingegneria Gestionale, consente la sinergia tra insegnamenti perfettamente coerenti con il profilo che si intende sviluppare.

**Profilo**. Il profilo dell'ingegnere meccatronico esperto in "Green Technologies" coniugherà conoscenze di ingegneria industriale e dell'informazione con conoscenze multidisciplinari utili per un corretto utilizzo di materiali innovativi e per l'implementazione di avanzati sistemi meccatronici ad elevata efficienza energetica.



# Green Technologies for Mechatronic Engineering - LM Ingegneria Meccatronica

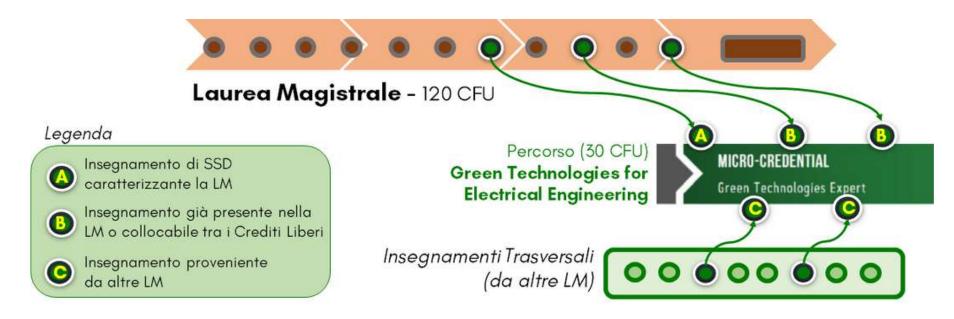
Struttura: 18 CFU nel percorso attuale (esami obbligatori o di indirizzo o a scelta libera); 12 CFU aggiuntivi nel percorso abilitante





| INSEGNAMENTO                                                             | SSD                      | CFU | LM DI EROGAZIONE                                   |
|--------------------------------------------------------------------------|--------------------------|-----|----------------------------------------------------|
| Azionamenti per l'industria e la mobilità elettrica                      | ING-IND/21               | 6   | Ingegneria Meccatronica                            |
|                                                                          |                          |     |                                                    |
| Elettronica per l'energia e la mobilità elettrica                        | ING-INF/01               | 6   | Ingegneria Meccatronica                            |
| Scambio termico nelle apparecchiature elettroniche                       | ING-IND/10               | 6   | Ingegneria Meccatronica                            |
| Metodi di selezione e scelta dei materiali                               | ING-IND/21               | 6   | Ingegneria dell'Innovazione del Prodotto           |
| Progettazione con materiali compositi                                    | ING-IND/14               | 6   | Ingegneria dell'Innovazione del Prodotto           |
| 2 su 4                                                                   |                          |     |                                                    |
| Metodi di selezione e scelta dei materiali                               | ING-IND/21               | 6   | Ingegneria dell'Innovazione del Prodotto           |
| Progettazione con materiali compositi                                    | ING-IND/14               | 6   | Ingegneria dell'Innovazione del Prodotto           |
| Circular Economy                                                         | ING-IND/35<br>ING-IND/21 | 6   | Ingegneria Gestionale                              |
| Sustainability and digitalization of metallurgical processes (2022/2023) | ING-IND/21               | 9   | Ingegneria Gestionale Curr. Management Engineering |
| Energy management and digitalization (2022/2023)                         | ING-IND/10               | 9   | Ingegneria Gestionale Curr. Management Engineering |
| 2 su 5                                                                   |                          |     |                                                    |

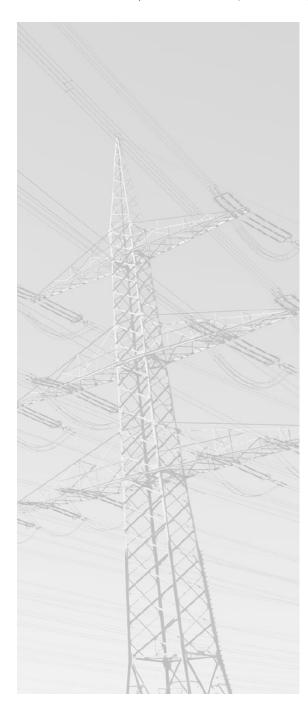
#### Green Technologies for Electrical Engineering - LM Ingegneria dell'Energia Elettrica [LM-28]


Struttura: 18 CFU nel percorso attuale (esami obbligatori o di indirizzo o a scelta libera); 12 CFU aggiuntivi nel percorso abilitante



Motivazioni. L'Ingegneria dell'Energia Elettrica si occupa di generazione, trasporto, gestione e utilizzazione dell'energia elettrica; permette di acquisire un ampio spettro di conoscenze e competenze multidisciplinari, relative non solo alle tecnologie specifiche più progredite ma anche la visione strategica necessaria ad affrontare le sfide tecnologiche e socioeconomiche del futuro relative sia alle tecnologie Green che alle infrastrutture Smart.

Opportunità. Ampio spazio è dedicato alle macchine che trasformano energia meccanica in elettrica (generatori) e viceversa (motori) e ai convertitori statici. In tale ambito rientrano gli azionamenti elettrici, l'automazione elettrica e i veicoli elettrici ferroviari e stradali. La flessibilità di configurazione del percorso formativo con le molteplici opzioni di scelta dei vari insegnamenti permette utili approfondimenti su tematiche come dispositivi e sistemi di generazione elettrica innovativi (generatori fotovoltaici, eolici, ...), accumulo di energia elettrica, energia nucleare a fusione, applicazioni elettrotermiche industriali e medicali e nanotecnologie elettriche.


Profilo. Il laureato sarà in grado di interagire efficacemente con professionisti e ambienti caratterizzati da competenze diverse da quella elettrica, e potrà quindi trovare impiego come operatore di attività connesse alla gestione e al trattamento, dell'energia sia nelle forme classiche che in quelle più avanzate. Questa preparazione è particolarmente appropriata all'integrazione nella struttura produttiva del territorio, caratterizzata da numerose realtà aziendali nei settori impiantistico, elettromeccanico e dell'automazione e da molte strutture dedite alla produzione dell'energia elettrica ed alla sua distribuzione e gestione.



# Green Technologies for Electrical Engineering - LM Ingegneria dell'Energia Elettrica [LM-28]

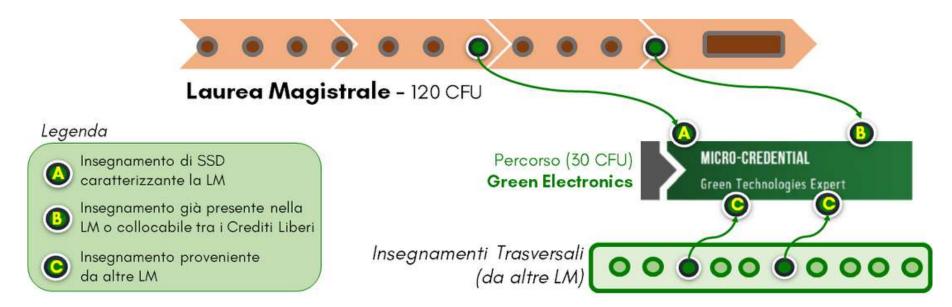
Struttura: 18 CFU nel percorso attuale (esami obbligatori o di indirizzo o a scelta libera); 12 CFU aggiuntivi nel percorso abilitante





| INSEGNAMENTO                                                                                                                                                                                                                                                                                                                                           | SSD                                                                                                                      | CFU                             | LM DI EROGAZIONE                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Renewable electric energy conversion and storage                                                                                                                                                                                                                                                                                                       | ING-IND/27                                                                                                               | 9                               | Ingegneria dell'Energia Elettrica                                                                                                                                                                                                                                                                              |
| Veicoli elettrici stradali                                                                                                                                                                                                                                                                                                                             | ING-IND/27                                                                                                               | 6                               | Ingegneria dell'Energia Elettrica                                                                                                                                                                                                                                                                              |
| 1 su 2 - 6 CFU riconosciuti nel percorso                                                                                                                                                                                                                                                                                                               |                                                                                                                          |                                 |                                                                                                                                                                                                                                                                                                                |
| Nuclear Fission and Fusion Green Power Conversion and Utilization Circular Economics and Local Development Cogeneration and combined plants Photovoltaic science and technology Energy and Buildings Energy Economics Energy systems Renewable energy technologies 2 su 9 - Nel caso degli insegnamenti da 9 CFU, solo 6 CFU riconosciuti nel percorso | ING-IND/31<br>ING-IND/32<br>SECS-P/06<br>ING-IND/09<br>ING-IND/31<br>ING-IND/10<br>SECS-P/06<br>ING-IND/09<br>ING-IND/10 | 6<br>6<br>6<br>6<br>6<br>9<br>9 | Ingegneria dell'Energia Elettrica Energy Engineering LM Local Development Energy Engineering Energy Engineering / Ingegneria Energetica Energy Engineering Energy Engineering |
| Green Power Conversion and Utilization Circular Economics and Local Development Cogeneration and combined plants Photovoltaic science and technology Energy and Buildings Energy Economics Energy systems Renewable energy technologies 2 su 9 - Nel caso degli insegnamenti da 9 CFU, solo 6 CFU riconosciuti nel percorso                            | ING-IND/32<br>SECS-P/06<br>ING-IND/09<br>ING-IND/31<br>ING-IND/10<br>SECS-P/06<br>ING-IND/09<br>ING-IND/10               | 6<br>6<br>6<br>6<br>9<br>9      | Energy Engineering LM Local Development Energy Engineering Energy Engineering / Ingegneria Energetica Energy Engineering / Ingegneria Energetica Energy Engineering / Ingegneria Energetica Energy Engineering Energy Engineering Energy Engineering / Ingegneria Energetica                                   |

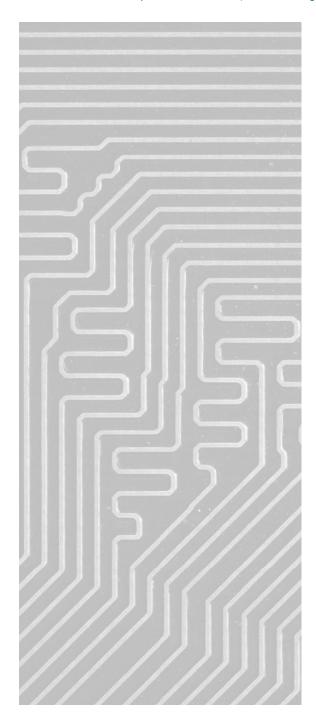
#### Green Electronics - LM Ingegneria Elettronica [LM-29] - Electronic engineering


Struttura: 15 CFU nel percorso attuale (esami obbligatori o di indirizzo o a scelta libera); 15 CFU aggiuntivi nel percorso abilitante

MICRO-CREDENTIAL
Green Technologies Expert

Motivazioni. L'ingegneria elettronica è una disciplina ad ampio spettro che include sia lo studio del funzionamento fisico del singolo dispositivo elettronico e optoelettronico, sia la progettazione di circuiti e sistemi elettronici, per arrivare fino alla progettazione e alla gestione di sistemi di complessità elevata. In estrema sintesi, si può affermare che l'ingegneria elettronica si occupa di tutte quelle tecnologie che risultano abilitanti per i sistemi e le applicazioni nell'ambito delle ICT, sviluppando il supporto fisico (hardware) per la loro realizzazione.

Opportunità. L'ingegnere elettronico possiede già diverse competenze richieste per lo sviluppo e la gestione di sistemi negli ambiti delle tecnologie green e delle infrastrutture smart. L'offerta formativa attualmente proposta già include insegnamenti affini o trasversali mutuati da altre lauree magistrali in ingegneria (anche nel settore industriale), che permettono al laureato di sviluppare competenze in aree applicative dei sistemi elettronici. Questo percorso costituisce quindi il naturale sviluppo dell'attuale offerta formativa, rafforzando le competenze trasversali che risultano strategiche dal punto di vista della generazione e della gestione efficienti dell'energia.


Profilo. Il laureato magistrale "esperto in tecnologie green" avrà acquisito ulteriori conoscenze e competenze in alcuni ambiti trasversali rispetto all'ingegneria elettronica, ma per i quali i componenti e i sistemi elettronici sono un elemento fondamentale per l'efficienza energetica. Tra questi, per esempio, l'ambito della conversione dell'energia e dell'alimentazione di motori elettrici; tra gli insegnamenti trasversali offerti vi è anche particolare attenzione all'impatto socioeconomico delle tecnologie green.



# Green Electronics - LM Ingegneria Elettronica [LM-29]

Struttura: 15 CFU nel percorso attuale (esami obbligatori o di indirizzo o a scelta libera); 15 CFU aggiuntivi nel percorso abilitante

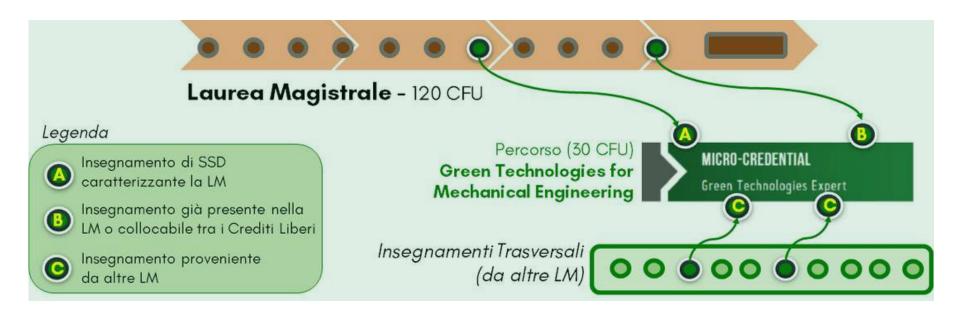




| INSEGNAMENTO                                       | SSD                   | CFU | LM DI EROGAZIONE                              |
|----------------------------------------------------|-----------------------|-----|-----------------------------------------------|
| Optoelectronics and Photovoltaic Devices           | ING-INF/01            | 9   | Ingegneria Elettronica                        |
| Power Electronics Design                           | ING-INF/01            | 9   | Ingegneria Elettronica                        |
| Integrated Circuits for Signal Processing          | ING-INF/01            | 9   | Ingegneria Elettronica                        |
| 1 su 3                                             |                       |     |                                               |
| Veicoli elettrici stradali                         | ING-IND/32            | 6   | Ingegneria dell'Energia Elettrica             |
| Green Power Conversion and Utilization             | ING-IND/32            | 6   | Energy Engineering                            |
| Electrochemical energy storage technologies        | CHIM/07               | 6   | Ingegneria Chimica e dei Processi Industriali |
| Energy and Buildings                               | ING-IND/10            | 6   | Energy Engineering / Ingegneria Energetica    |
| Energia e sostenibilità nel XXI Secolo             | SECS-P/06             | 6   | Ingegneria dell'Energia Elettrica             |
| 1 su 5                                             |                       |     |                                               |
| Veicoli elettrici stradali*                        | ING-IND/32            | 6   | Ingegneria dell'Energia Elettrica             |
| Green Power Conversion and Utilization*            | ING-IND/32            | 6   | Energy Engineering                            |
| Electrochemical energy storage technologies*       | CHIM/07               | 6   | Ingegneria Chimica e dei Processi Industriali |
| Energy and Buildings *                             | ING-IND/10            | 6   | Energy Engineering / Ingegneria Energetica    |
| Energia e sostenibilità nel XXI Secolo*            | SECS-P/06             | 6   | Ingegneria dell'Energia Elettrica             |
| Industrial Automation**                            | ING-INF/ 03-<br>04-05 | 9   | Control Systems Engineering                   |
| Renewable electric energy conversion and storage** | ING-IND/32            | 9   | Ingegneria dell'Energia Elettrica             |
| Renewable energy technologies**                    | ING-IND/10            | 9   | Energy Engineering                            |
| Energy Economics**                                 | SECS-P/06             | 9   | Energy Engineering                            |
| Energy systems**                                   | ING-IND/09            | 9   | Energy Engineering                            |
| * 1 su 5                                           |                       |     |                                               |
| ** 1 su 5                                          |                       |     |                                               |

#### Green Technologies for Mechanical Engineering - LM Ingegneria Meccanica [LM-33]

MICRO-CREDENTIAL


Green Technologies Expert

Struttura 1: 18 CFU nel percorso attuale (esami obbligatori o di indirizzo o a scelta libera); 12 CFU aggiuntivi nel percorso abilitante Struttura 2: 15 CFU nel percorso attuale (esami obbligatori o di indirizzo o a scelta libera); 15 CFU aggiuntivi nel percorso abilitante

Motivazioni. Tra i diversi ambiti di indagine, l'Ingegneria Meccanica si occupa della progettazione di impianti di generazione di energia con diversi vettori energetici. Questa Laurea Magistrale permette di acquisire conoscenze e competenze specifiche, relative non solo alle tecnologie specifiche più progredite ma anche la visione strategica necessaria ad affrontare con successo la sfida della transizione energetica mediante le tecnologie Green.

Opportunità. Le conoscenze sono relative alla trasmissione del calore e termofluidodinamica, alle macchine, alla mobilità sostenibile, alle energie rinnovabili, agli impianti combinati e cogenerativi, all'energetica degli edifici e agli impianti termotecnici. Il percorso formativo permette utili approfondimenti sulle tematiche della transizione energetica mediante diversi sistemi di produzione, distribuzione e vendita dell'energia.

**Profilo**. Il laureato magistrale in Ingegneria Meccanica con la qualifica di esperto in "Green Technologies" sarà in grado di lavorare sulle tematiche di tecnologie verdi, applicando macchine e sistemi a fonte rinnovabile, approfondendo le tematiche di efficientamento. Il laureato potrà lavorare nella progettazione di impianti di climatizzazione a servizio di edifici civili e industriali, impianti combinati e cogenerativi . Questo tipo di preparazione si integra nella struttura produttiva del territorio, caratterizzata da numerose realtà aziendali nei settori del caldo e del freddo, dell'impiantistica (progettazione e realizzazione di impianti), ESCOs (Energy Service Companies).



# Green Technologies for Mechanical Engineering - LM Ingegneria Meccanica [LM-33]

Struttura 1: 18 CFU nel percorso attuale (esami obbligatori o di indirizzo o a scelta libera); 12 CFU aggiuntivi nel percorso abilitante





| INSEGNAMENTO                           | SSD               | CFU | LM DI EROGAZIONE                            |
|----------------------------------------|-------------------|-----|---------------------------------------------|
| Refrigeration and heat pump technology | ING-IND/10        | 9   | Ingegneria Meccanica                        |
| Energy systems                         | ING-IND/09/08     | 9   | Energy Engineering                          |
| Energy Economics                       | SECS-P/06         | 9   | Energy Engineering / Ingegneria Energetica  |
| 1 su 2                                 |                   |     | 0, 0 0, 0 0                                 |
|                                        | oppure            |     |                                             |
| Refrigeration and heat pump technology | ING-IND/10        | 9   | Ingegneria Meccanica                        |
| Cogeneration and combined plants       | ING-IND/09        | 6   | Ingegneria Meccanica                        |
| Applied Energy *                       | ING-IND/09        | 4   | Indognaria Magagniag                        |
| Applied Energy                         | ING-IND/08        | 5   | Ingegneria Meccanica                        |
| * solo 3 CFU riconosciuti nel percorso |                   |     |                                             |
|                                        | oppure            |     |                                             |
| Renewable energy technologies          | ING-IND/10        | 6   | Ingegneria Meccanica                        |
| Cogeneration and combined plants       | ING-IND/09        | 6   | Ingegneria Meccanica                        |
| Electrochemical energy storage *       | CHIM/07           | 6   | Ingegneria Chimica e dei Processi Industria |
| Strategic Environmental Management *   | ING-IND/27        | 6   | Ingegneria Chimica e dei Processi Industria |
| Veicoli elettrici stradali *           | ING-IND/32        | 6   | Ingegneria dell'Energia Elettrica           |
| * 1 su 3                               |                   |     |                                             |
|                                        | oppure            |     |                                             |
| Applied Energy                         | ING-IND/09        | 4   | Ingegneria Meccanica                        |
| Applied Ellergy                        | ING-IND/08        | 5   | ingegneria Meccanica                        |
| Veicoli ibridi elettrici               | ING-IND/13        | 5   | Ingegneria Meccanica                        |
| veicoli ibridi elettrici               | ING-IND/32        | 4   | ingegneria Meccanica                        |
| Electrochemical energy storage         | CHIM/07           | 6   | Ingegneria Chimica e dei Processi Industria |
| Strategic Environmental Management     | ING-IND/27        | 6   | Ingegneria Chimica e dei Processi Industria |
| Energia e sostenibilità nel XXI Secolo | SECS-P/06         | 6   | Ingegneria dell'Energia Elettrica           |
| Business Economic and Financial Data   | SECS-S/03         | 6   | Data Science                                |
| Energy and Buildings                   | ING-IND/10        | 6   | Energy Engineering / Ingegneria Energetic   |
| 0,                                     | ING-IND/10        | -   | Ingegneria dell'Energia Elettrica           |
| Veicoli elettrici stradali             | INI(2 INI1) / 4/) | 6   | Indeaneria dell'Energia Elettrica           |

# Green Technologies for Mechanical Engineering - LM Ingegneria Meccanica [LM-33]

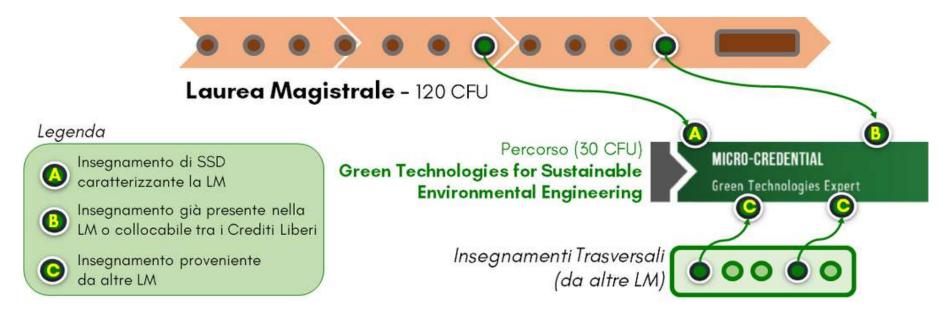
Struttura 2: 15 CFU nel percorso attuale (esami obbligatori o di indirizzo o a scelta libera); 15 CFU aggiuntivi nel percorso abilitante





|            | INSEGNAMENTO                           | SSD        | CFU | LM DI EROGAZIONE                              |
|------------|----------------------------------------|------------|-----|-----------------------------------------------|
| A          | Refrigeration and heat pump technology | ING-IND/10 | 9   | Ingegneria Meccanica                          |
| B          | Cogeneration and combined plants       | ING-IND/09 | 6   | Ingegneria Meccanica                          |
|            | Electrochemical energy storage *       | CHIM/07    | 6   | Ingegneria Chimica e dei Processi Industriali |
|            | Strategic Environmental Management *   | ING-IND/27 | 6   | Ingegneria Chimica e dei Processi Industriali |
|            | Energia e sostenibilità nel XXI Secolo | SECS-P/06  | 6   | Ingegneria dell'Energia Elettrica             |
| <b>(C)</b> | Business Economic and Financial Data   | SECS-S/03  | 6   | Data Science                                  |
|            | Energy and Buildings                   | ING-IND/10 | 6   | Energy Engineering                            |
|            | Veicoli elettrici stradali             | ING-IND/32 | 6   | Ingegneria dell'Energia Elettrica             |
|            | Energy systems **                      | ING-IND/09 | 9   | Energy Engineering                            |
|            | Energy Economics **                    | SECS-P/06  | 9   | Energy Engineering/Ingegneria Energetica      |
|            | * 1 su 6                               |            |     | 0, 0 0                                        |
|            | ** 1 su 2                              |            |     |                                               |

### Green Technologies for Sustainable Environmental Engineering - LM Environmental Engineering [LM-35]


Struttura: 18 CFU nel percorso attuale (esami obbligatori o di indirizzo o a scelta libera); 12 CFU aggiuntivi nel percorso abilitante

MICRO-CREDENTIAL
Green Technologies Expert

Motivazioni. La laurea in Environmental Engineering è per sua natura multidisciplinare, necessita di una consistente formazione di base tecnico-scientifica specifica, ma deve confrontarsi con le nuove sempre più urgenti sfide in termini di salvaguardia dei comparti ambientali e sostenibilità delle risorse, e deve quindi saper offrire percorsi che si integrano sempre di più con i diversi settori con cui interagisce (legislativo, economico, energetico, sanitario, dei trasporti, delle costruzioni).

**Opportunità**. Nuove dimensioni internazionali e nuovi mercati richiedono un'ingegneria ambientale sempre più interdisciplinare che possa intercettare la necessità di cambiamento pur mantenendo forti competenze tecnico-scientifiche di base.

**Profilo**. Con questo nuovo percorso, i laureati in Environmental Engineering potenziano le proprie competenze con l'obiettivo di nuove e più sinergiche prospettive professionali. I laureati di questo nuova proposta formativa saranno più flessibili e dinamico, culturalmente e tecnologicamente competitivi nel mercato anche internazionale soprattutto nei settori dove vengono richeste competenze tecniche avanzate, ma anche manageriali e relazionali.



### Green Technologies for Sustainable Environmental Engineering - LM Environmental Engineering [LM-35]

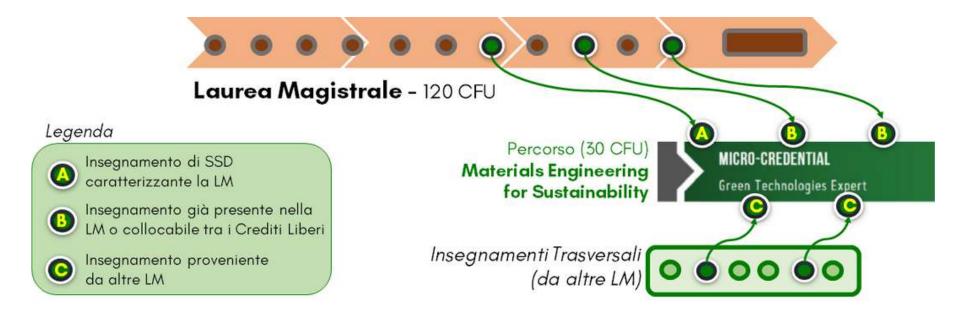
Struttura: 18 CFU nel percorso attuale (esami obbligatori o di indirizzo o a scelta libera); 12 CFU aggiuntivi nel percorso abilitante





| INSEGNAMENTO                                                  | SSD        | CFU | LM DI EROGAZIONE                                            |
|---------------------------------------------------------------|------------|-----|-------------------------------------------------------------|
| Circular and sustainable waste management                     | ICAR/03    | 9   | Environmental Engineering                                   |
| River Engineering                                             | ICAR/02    | 9   | Environmental Engineering                                   |
| 1 su 2                                                        |            |     |                                                             |
| Remediation of contaminated sites                             | ICAR/03    | 9   | Environmental Engineering                                   |
| Water resources management                                    | ICAR/02    | 9   | Environmental Engineering                                   |
| 1 su 2                                                        | ,          |     | ů ů                                                         |
| Wind and hydraulic turbines                                   | ING-IND/08 | 9   | Energy Engineering / Ingegneria Energetica                  |
| Energy and buildings                                          | ING-IND/10 | 6   | Energy Engineering / Ingegneria Energetica                  |
| Process technologies for carbon neutral fluels                | ING-IND/10 | 6   | Energy Engineering                                          |
| Psychology, policy making and education to a circular economy | M-PSI/04   | 6   | Sustainable chemistry and technologies for circular economy |
| Biopolymers Engineering                                       | ING-IND/22 | 6   | Materials Engineering / Ingegneria dei Materia              |
| Principles of sustainability science                          | SECS-P/06  | 6   | Local Development                                           |
| 2 su 6                                                        | ,          |     | 1                                                           |

#### Materials Engineering for Sustainability - LM Materials Engineering [LM-53]


Struttura: 18 CFU nel percorso attuale (esami obbligatori o di indirizzo o a scelta libera); 12 CFU aggiuntivi nel percorso abilitante

MICRO-CREDENTIAL
Green Technologies Expert

Motivazioni. L'Ingegneria dei Materiali è un settore interdisciplinare che ha trasformato ogni aspetto della vita moderna introducendo materiali nuovi e cruciali per lo sviluppo di nuove tecnologie e per la vitalità di numerose industrie. Il corso offre una solida formazione in ambito chimico-fisico, forma una figura professionale in grado di esplorare le fondamenta scientifiche dei materiali, il loro design e le loro trasformazioni per le applicazioni nel mondo reale, e di sviluppare processi per la modificazione dei materiali in risposta alle esigenze della moderna tecnologia. Il percorso integra tali competenze in un'ottica ambientale e sostenibile, con particolare enfasi al riciclo dei materiali, all'utilizzo di materiali naturali e ai materiali impiegati nel settore delle energie rinnovabili.

Opportunità. Ampio spazio è dedicato alla progettazione di nuovi materiali di diversa natura nell'ottica della sostenibilità e della sicurezza, dell'analisi dei potenziali dati di processo, dei materiali naturali e/o di quelli riciclabili. La flessibilità di configurazione del percorso formativo con le molteplici opzioni di scelta dei vari insegnamenti permette inoltre utili approfondimenti su tematiche di diversa natura nell'ambito delle applicazioni delle Green Technologies (riciclo e riutilizzo dei materiali, riciclo dei metalli rari, progettazione e selezione dei materiali per un'economia circolare, materiali innovativi per le energie rinnovabili).

Profilo. Il laureato in Ingegneria dei Materiali esperto in "Green Technologies" sarà in grado di progettare e sviluppare materiali nell'ambito delle tecnologie sostenibili e delle energie rinnovabili, e di interagire con esperti dei vari settori coinvolti nell'ambito della transizione ecologica, a livello nazionale e internazionale. Si integrerà nella struttura produttiva del territorio, caratterizzata da numerose realtà aziendali legate ai materiali innovativi e sostenibili, e al riciclo dei materiali, incluso il recupero da dispositivi elettronici dismessi.



### Materials Engineering for Sustainability - LM Materials Engineering [LM-53]

Struttura: 18 CFU nel percorso attuale (esami obbligatori o di indirizzo o a scelta libera); 12 CFU aggiuntivi nel percorso abilitante

Oppure: 21 CFU (di cui 3 extra-curriculari) nel percorso attuale (esami obbligatori o di indirizzo o a scelta libera); 9 CFU aggiuntivi nel percorso abilitante



| INSEGNAMENTO                                          | SSD                       | CFU | LM DI EROGAZIONE                                               |
|-------------------------------------------------------|---------------------------|-----|----------------------------------------------------------------|
| Polymer processing and recycling                      | ING-IND/27                | 6   | LM-Materials science                                           |
| Glass science and technology                          | ING-IND/22                | 6   | LM-Materials science                                           |
| Sustainable Energy: Materials and Technologies        | CHIM-03                   | 6   | LM-Materials science                                           |
| Materials design and selection for circular economy * | CHIM/02/03;<br>ING-IND/22 | 9   | LM-Sustainable chemistry and technologies for circular economy |
| Electrochemical energy storage technologies           | CHIM/07                   | 6   | LM-Chemical and Process Engineering                            |
| 1 su 5 - * solo 6 CFU riconosciuti nel percorso       |                           |     | ů ů                                                            |
| Process technologies for carbon-neutral fuels *       | ING-IND/25                | 6   | Energy Engineering                                             |
| Photovoltaic science and technology *                 | ING-IND/31                | 6   | Energy Engineering                                             |
| Green Power Conversion and Utilisation *              | ING-IND/32                | 6   | Energy Engineering                                             |
| Energia e sostenibilità nel XXI Secolo *              | SECS-P/06                 | 6   | Ingegneria dell'Energia Elettrica                              |
| Renewable energy technologies **                      | ING-IND/10                | 9   | Energy Engineering                                             |
| Circular and sustainable waste management **          | ICAR/03                   | 9   | Environmental Engineering                                      |
| Energy Economics **                                   | SECS-P/06                 | 9   | Energy Engineering / Ingegneria Energetica                     |
| * 1 su 4                                              |                           |     |                                                                |
| ** 1 su 3                                             |                           |     |                                                                |
| Economics for the circular economy *                  | SECS - P/01               | 6   | Sustainable chemistry and technologies for circular econo      |
| Energia e sostenibilità nel XXI Secolo *              | SECS-P/06                 | 6   | Ingegneria dell'Energia Elettrica                              |
| Green Power Conversion and Utilisation *              | ING-IND/32                | 6   | Energy Engineering                                             |
| Renewable energy technologies **                      | ING-IND/10                | 9   | Energy Engineering                                             |
| Circular and sustainable waste management **          | ICAR/03                   | 9   | Sustainable chemistry and technologies for circular econo      |
| Energy Economics **                                   | SECS-P/06                 | 9   | Energy Engineering                                             |
| 2 su 3 * oppure 1 su 3 **                             |                           |     |                                                                |

MICRO-CREDENTIAL

Green Technologies Expert